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Abstract

The Abstract Definitive Machine is analysed and criticised in a contem-

porary Empirical Modelling context. Certain ADM ideas are developed into

a new Empirical Modelling environment, a definitive notation with a radical

nested structure and a finer grained style of interaction, designed to solve

some of Eden’s problems. New questions are raised about the presence of

static type checking in Empirical Modelling tools, and the role of the tool’s

interface in presenting a graphical depiction of the model. Suggestions are

made as to how more of definitive scripts’ limitations can be overcome.
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Chapter 1

Introduction

The original Abstract Definitive Machine implementation “am” was devel-

oped by Slade, while he produced his Masters’ thesis[4]. This implementation

has since been vastly superseded by Eden, in terms of functionality and ma-

turity. It is, however, based on ideas that are closer to Empirical Modelling

concepts than Eden has ever ascribed. Eden is a great improvement over

both imperative and declarative languages, in terms of implementing Em-

pirical Modelling concepts, but as a definitive notation, it does not directly

support certain classes of models. For example models involving the interac-

tions of different agents, are hard to represent (although this can be achieved

with a disciplined naming strategy, or use of dtkeden). Especially, it has

poor support for modelling situations where there is a prescribed passage of

“time”.

It was felt that a re-implementation of the ADM might at worst provide

an account of the usefulness of ADM ideas, many years on from their initial

conception, and at best lead the way for a next generation of Empirical

Modelling tools. As well as doing justice to the ideas developed by Slade, we

can use this opportunity to study some of Eden’s problems, and how they

can be overcome. In many ways the re-implementation has been a proof-

of-concept implementation of ideas that were never present in the original

ADM. Some of these ideas are a natural evolution of ADM ideas (such as

nesting instances), some are a slightly different interpretation of the same
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vision (temporal dependency) and some ideas are brand new (static type

checking and graphic visualisation of models).

In all of these cases, development of the Asylum (as the new implementa-

tion has now been named), has provided an opportunity to investigate these

ideas and test their usefulness in a concrete tool. Because time was a major

constraining factor, the amount of implementation work that could be done

was quite limited. However, the thinking and design work behind the imple-

mentation is more complete, and it is still useful to review the conclusions

made during this process.

The structure of this report is as follows: First we summarise the fea-

tures of the ADM. This provides a base on which we can discuss, criticise

and extend these features in a contemporary setting, with reference to the

more recent developments in Empirical Modelling and Definitive Notations.

Following this theoretical discussion is an account of the actual implemen-

tation of the Asylum in C code, and all the pitfalls and problems that the

implementation process presented. Finally we discuss how the Asylum is

still limited, and what possible steps could be taken in the future, in order

to increase its effectiveness as an Empirical Modelling tool.



Chapter 2

The ADM according to Slade

It is beneficial at this stage to briefly summarise the features of the ADM

that make it different to Eden. A more complete description, formed from

first principles, can be found in Slade’s thesis[4]. The following description

is a direct interpretation of the latter, but focuses on specific details that are

felt to be most important.

First we must understand that the purpose of the ADM is to provide a

vehicle for the animation of LSD scripts. LSD is a specification language

whereby we can account for our understanding of the way a set of agents

interact in a model. By “animate”, we mean we want to see and interact

with the model in order to understand it better. The syntax of the ADM

is therefore very similar to LSD, having been designed to allow the easy

conversion of LSD into a form the computer can interpret and animate.

2.1 Agents

The first interesting feature of the ADM is therefore the way that the model

is divided into a set of entities, or agents. The term “agent” is the more

abstract definition used by LSD. The term “entity” is used to describe the

feature of the ADM that is used to implement agents. An entity in the

ADM describes the behaviour of an object within the model. Any object can

be modelled in this fashion, no matter how complex, or significant a role it

6
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plays in the model. An entity can represent the concept of a phone, a car,

an ignition system, or a driver. These objects are concurrently interacting

within the model.

Typically an entity owns some observables and has control over them.

These observables will change value over time, this being the representation of

the entity’s activity. An entity will also require information from some other

instances of entities in order to function properly. This is the representation

of communication between the various agents in the system.

Each entity can be instantiated once, or many times if there is a way of

keeping the instances distinct (more on this in section 2.4). Each instance

has its own state and makes its own independent decisions, but the manner

in which it behaves is determined by its entity. Each instance of an entity

can reference observables in other instances, to receive information.

There are two immediate consequences of this feature. Firstly we can

build models with different agents that interact (rather than a flat set of

observables), much in the way that we can perceive a real world situation

to be a collection of interacting agents. This is not particularly useful, since

it is just a syntactical structure that makes our models more clear. The

second is that models can be constructed with a set of identically behaving

agents interacting in a prescribed way. The following is a demonstration

of this claim. It is a model of two players playing the traditional game of

“Paper Scissors Stone”, but the “Player” entity is defined only once. This is

important because in Eden, there is no way to instantiate multiple collections

of observables with an associated prescribed behaviour.

entity player (_id,_opponent) {

DEFINITION

choice[_id],

diff[_id] = choice[_id] - choice[_opponent], # <--- note

win1[_id] = diff[_id] + (diff[_id]<0) * 3,

win[_id] = win1[_id] == 1,

lose[_id] = win1[_id] == 2,

draw[_id] = !win[_id] && !lose[_id]

ACTION

true -> choice[_id] = |rand(3)|

}

player(0,1)
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player(1,0)

Note how the definition of an arbitrary player’s “win” status refers to

the choices randomly made by both players, hence we are representing two

communicating agents with the same behavioural specification.

2.2 Observables: Oracles and Dependency

k An entity’s observables can be either an oracle (information brought in from

some other instance, and hence read-only), or a derivate (information defined

locally, based on other observables). The derivate is, in general, defined to be

the result of a function applied to a set of other observables. The usual infix

operators are allowed such as +, -, * and /, as well as logical operations such

as &&, and ||. Strangely, the declarative if statement ?: seems to be missing.

Perhaps this is an oversight in the original implementation. Dependencies

allow some basic computation and shaping to be done to the oracles, before

decisions are made based on them.

It is significant that the notion of dependency is a very direct metaphor of

the manner in which we perceive the relationships between different objects’

observables. It is therefore an ideal mechanism through which the modeller

can express their experience of interacting agents, while retaining the ability

to “compute” the construal in reasonable time. Much can be said about the

power of dependency in Empirical Modelling, but this is not of much interest

here, as we wish to investigate the features of the ADM that separate it from

Eden, which has the same mechanism of dependency as was just described.

So far our entities are defined like so:

• The entity name.

• A set of observables that are imported from other specified instances.

• A set of observables that are functionally derived from other observ-

ables.
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Here is another entity that makes clearer use of these features, than the

“Paper Scissors Stone” player defined in section 2.1:

entity student ()

{

DEFINITION

overallpercent = catsreceived / ((120+catstaken)/2),

catstaken = 135,

catsreceived = projectmark*30 + exammarks * (catstaken-30)

}

The oracles in this example are projectmark and exammarks. The idea

is that these names exist in some other instance of some other entity. If

these observables are unavailable, they evaluate to “@”, an exceptional value

that denotes the potentially undefined nature of observables. This value

spreads through functional expressions effectively preventing any evaluation

of that observable, and thus we can deal with models that are not completely

built. This mechanism can be thought of adding an element of safety to the

evaluation of dependencies, and also as allowing a construal with incomplete

knowledge, to still be represented in the machine.

Expressions also evaluate to “@” if there is a cyclic dependency in these

derived observables. This, again, acts as a placeholder for the value of an

observable that cannot be calculated.

Clearly a “well defined” instance can thus be visualised as a simple di-

rected acyclic graph, showing the flow of information through the computa-

tions. In itself, this does not allow us to express much character within these

entities, as they have no way of enumerating a state. We refer here to “state”

in the automata sense of the word, where state is the result of repeatedly

applying a state transition function to an initial state. This is analogous to

the limitations of combinatorial logic circuits.

2.3 Execution Cycle

To allow us to represent more complex entities, the ADM allows another

mechanism within its entities. It is possible to specify an action that occurs
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under special conditions (i.e. when a boolean expression on a set of observ-

ables holds true). The action can be a redefinition of a derivate observable,

an instantiation of an instance, or a deletion of an instance.

A redefinition allows the function expression that defines the value of

an observable, to be indefinitely changed to another function expression,

potentially of a different set of observables. This also allows the changing of

an expression such as a literal number, e.g. “3” into another literal number.

It is additionally possible to evaluate an expression into a literal value, and

embed this value into the new definition. This is possible with the |exp|

syntax.

An instantiation of an entity is equivalent to creating the set of derived

observables owned by that instance, with their default values. A deletion of

an instance is equivalent to undefining every derived observable owned by

that instance.

The ADM processes these actions with the following “execution cycle”:

1. The ADM is in a steady state.

2. All guards are evaluated and a pending set of actions is built up.

3. These actions are concurrently performed.

4. The ADM is in a steady state once again.

Because the actions are concurrently performed, there is some possibil-

ity of race conditions arising, if two actions concurrently redefine the same

observable (including during the activity of deleting or instantiating the con-

taining instance), or if an observable is evaluated at the same time as it is

modified. The ADM refers to the resultant erroneous state as a “singular

state” and assigns the “@” value to all affected observables.

A simple entity which demonstrates actions is a ticking clock:

entity clock() {

DEFINITION

seconds = 15,

minutes = 15,

hours = 3
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ACTION

seconds<59 -> seconds = |seconds+1|,

seconds==59 -> seconds = 0,

seconds==59 && minutes<59 -> minutes = |minutes+1|,

seconds==59 && minutes==59 -> minutes = 0,

seconds==59 && minutes==59 && hours<11 -> hours = |hours+1|,

seconds==59 && minutes==59 && hours==11 -> hours = 0

}

When the guards are evaluated, anywhere between 1 and 3 actions might

be performed. Here is a transcript of this script being performed in the

original ADM implementation “am”. We can see that after 10000 execution

cycles, the clock has increased by approximately 3 hours.

compiling clock()

./am> clock()

instantiating clock

./am> set iterations = 10000

./am> start

...

* 10000 iterations successfully completed

./am> l ds

DEFINITION STORE

****************

Variable # 1: seconds = 55

Variable # 2: minutes = 1

Variable # 3: hours = 6

This mechanism is important, because it allows us to represent the chang-

ing state of the hands of the clock, over time. This kind of “temporal depen-

dency” is not something that is possible in Eden, without using a while loop.

With some imagination, it can be seen that we are specifying the rate of

change of the clock hands, like in a differential equation. This mechanism is

closer to the reality of what is occurring, and is therefore more ideally suited

as a fundamental element of an Empirical Modelling tool.

2.4 Parameters

As stated earlier, it is possible to instantiate an entity more than once. This

is useful because often a model will have multiple “beings” that are very
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similar in their behaviour, but are existing in different circumstances. Since

an instance has its own state, and triggers its own actions, this is a useful

mechanism to have when building a construal.

Because there is only one global namespace for observables, clearly there

will be a conflict if an entity is instantiated twice, so how can we get around

this? The ADM allows instantiating of an entity with a specific set of pa-

rameter values. This is roughly analogous with constructor arguments in

object orientated languages. The idea is to give instances (and hence their

observables) some information that can be used to identify them amongst

other observables belonging to a different instance. This is best explained

with an example:

entity human (_id,_age,_male,_mother,_father) {

DEFINITION

age[_id] = _age,

male[_id] = _male,

parents_age_difference[_id] = age[_father] - age[_mother],

}

human(0,24,true,1,2)

human(1,50,true,3,4)

human(2,44,false,5,6)

Here, we instantiate 3 Human beings. The Human observables can be

told apart because they are referenced using an index value. An instance

can reference its own observables by using the id parameter as an index.

An instance can also access an arbitrary observable by using some arbitrary

index. The other parameters give the entity some information it can use

to derive its default definitions. In this case, the parameter age is used to

initialise part of the instance’s state, but the parameter father is used as an

identity for contacting an observable of another instance. The essential lesson

here is that an “ id” parameter can be used to uniquely identify an instance’s

observables, and therefore it can be used to allow multiple instances of the

same entity.

This is an interesting strategy, most other languages have used specific

placeholders for referring to different instances. For example in Java and

C++ you give each instance a name, in the form of “Object myObject =

new Object();”. However it does work, and it seems appropriate to identify
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objects by the parameters that describe them, since this is how we typically

identify anonymous objects in the real world. For example “the chair in the

corner” or “the red car”. The problem is that this can get confusing, and if

we are to use a parameter for this purpose, we would rather it were a piece

of text, which is far more descriptive and readable. If we want, we can still

name the object after its parameters, E.G. “my red car is Car(RED)”.

2.5 Criticism Of The “am” Implementation

Why, despite the closer relationship that the ADM has with Empirical Mod-

elling, has Eden grown to be the dominant tool? There is a converter between

ADM scripts and Eden code, (although this does not allow for the interactive

style of model building, which is such an important property of EM tools)

which has been used successfully in FootballTurner2000[9]. This suggests

that the ADM has enough expressive power to construct sophisticated mod-

els of interacting agents. It suggests that if there were a good implementation

of the ADM, it would be well received by the modellers who currently use

Eden. So what is wrong with the original ADM implementation “am”?

When we try to use “am”, it quickly becomes apparent that the software

has major usability problems. Because interaction is an important feature

for Empirical Modelling tools, the fact that “am” is a console application is

an immediate flaw. Command line interfaces are flexible and fast, but they

cannot easily convey a large amount of structured data. Having said this,

Eden is essentially a command-line application, even in tkeden we still enter

commands in a special language, into a window to be interpreted by the tool.

Interaction with the ADM is somewhat more structured, however. Since we

are dealing with an enumerating state, and the model is divided into multiple

agents, rather than just a list of functions and observables. We really require

an interface that presents the current “state” of the model in a clear manner.

However even with the low expectations that we may have for a command

line interface application, “am” is remarkably hard to interact with.

The “am” program code uses a flex/yacc parser generator combination to
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process the modeller’s input. This seems like a good idea at first, it factors

away the gritty details of receiving input from the console, and allows us to

build up expressive grammars. There is one major problem however: When

we interact with an Empirical Modelling tool, it is important that there is

a continual process of evaluation, comparison, and redefinition made by the

modeller: The modeller must observe the behaviour of the model (state as

experienced) and compare it to the behaviour of the referent (as experienced

or imagined). The modeller must then identify where the current model is

inaccurate, and amend it by making redefinitions.

In the case of the ADM, this means making modifications to the entities,

and observing the interactions between agents over the passage of several

execution cycles. The essential point is that each modification has to be very

small, and each observation made of the current state of the model must be

quick. The tighter we can make the loop of evaluation and improvement, the

more effective the modelling process will be.

In contrast to the tight loop of interaction required, building expressions

for the “am” interpreter is a lengthy process, since an entire structured entity

“clause” has to be typed out before anything can be observed. A precise

sequence of tokens must be formed before the meaning of the interaction

can be understood. This is simply the nature of parsed grammars. This

deficit is not surprising when we consider that Slade was building a proof of

concept implementation for his machine. It was of major concern to test the

expressive power of the language, rather than building an interactive tool

(which is actually a difficult task to accomplish well).

Adding to the problems faced by the user, who has to provide a lengthy,

structured sequence of tokens, the currently running instances have to be

deleted and re-instantiated when a change is made to the entities from which

they are derived. The mode of interaction within “am” is much more akin

to the process of programming, compiling, and test, that we associate with

conventional programming. This can be contrasted to Eden, where observa-

tions can be made at any time during “execution” of a model, and changes

made to both definitive and procedural code.

I believe that this process can be made even more rewarding than Eden al-
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lows, by reducing the scope of modeller modifications to the smallest possible

unit, and having direct and immediate visual feedback after each interaction.

This means having a real-time graphical display of the model, including the

state of entities and the interacting instances. This also means turning the

redefinition process into a sequence of extremely short actions, the result

of each action being immediately presented to the modeller. Rather than

creating an entity all at once, we must first create the entity, then spend

some time working on its internal definition, maybe with some interacting

instances already alive. We should also be able to backtrack at any point, it

must be possible to undo any work that has been done.

This style of model building is as far removed from traditional program-

ming as we can imagine. It has a lot more in common with spreadsheet

applications, and even what we might call “drawing” programs: Programs

that feature a canvas and immediate user feedback during edits. During the

Asylum’s design process, I have strived to make this possible. This will be a

major topic of discussion in section 6.1.1.

Structured language may not, after all, be the best way of communicating

our imaginative, intuitive, creative processes to a computer. This may have

been the only possible method when computers were very slow and graphical

displays had not yet been developed, but with modern technology, we can

investigate the power of symbolic visualisation and feedback in the creative

process of developing computer software. Language has always been a tool

for communicating and recording information, and may not be best suited

as a medium for interactively building a construal.

A study of the programming code that defines “am” shows that it is

written in non-standard C, pre-ANSI. This is a portability problem, and in

the future it may be very difficult to compile this code. The implementation

is also rather poorly documented. These are issues I have attempted to avoid

while developing the Asylum.

This concludes the treatise of the major features of the Abstract Definitive

Machine, as designed by Slade. What follows is criticism and development

of these ideas, with respect to the problems faced by Eden and what we now

know to be the requirements of Empirical Modelling tools.



Chapter 3

Temporal Dependency

As mentioned in Chapter 2.3, a great many models require the passage of

time to have a significant role in their behaviour. Models such as the Vehicle

Cruise Control demonstration[10], which represents the behaviour of a system

that drives a vehicle at a constant velocity over a hill. In Computer Science

terminology, what we are simulating here is a transition function that decides

the future based on the current state. If s is the current state, then the future

state s′ can be calculated by application of the function f on the current state

s:

s′ = f(s).

In physics and engineering, we often use a definition of change in order

to model dynamic systems. For example when we mathematically model the

temperature of a block of metal as it radiates its heat into its environment,

we might use a differential equation like so:

dT

dt
= −kT

By this we mean that the rate of change of temperature is related to the

current temperature. This is the kind of relationship that we have to repre-

sent in a construal of a dynamic model. In general, we can experience the

relationship between the current state and the next, and represent this with

a dependency of the form newstate is f(currentstate). We must make

the distinction here between this “animation” state, a measure of temporal

progression and the result of the application of many state transitions since

16
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the model began, with other definitions of “state” used in Empirical Mod-

elling. The notion of ”state as experienced“ describes the current state of

the construal, the definitions and instances currently in place, rather than

the union of all the observable data.

To elaborate on this last point, we can examine the Vehicle Cruise Control

model. The animation state includes the position and speed of the car. The

state as experienced is the collection of dependencies that the modeller has

defined, that are the reason the car in the model behaves the way it does.

3.1 Study of ADM Representation

The execution cycle introduced by the Abstract Definitive Machine aims to

provide a system of prescribed animation state transition. We are aware of a

discrete time step in the model, and by prescribing actions that concurrently

occur between time steps, we are specifying the transition from one steady

animation state to the next. There is however some redundancy and syntactic

sugaring in this notation, and it is instructive to strip this away, to discover

the most basic definitive notation that can describe a dynamic model. This is

useful because by pushing as much of a model as possible into the DEFINITION

section of an entity, we can see what aspects of execution cycles can already

be represented in Eden. When we find we can no longer represent the power

of actions with definitions, we will know what features Eden lacks.

First we can study the nature of the possible actions that can be per-

formed. There are three possible actions: redefinition of an observable, in-

stantiation of an entity, and deletion of an instance. Deletion of an instance

means to render its observables undefined. Since we can simply redefine all

of its observables to “@”, this is not necessary. Instantiation of an entity

that has previously been deleted, is thus simply a matter of redefining these

observables to their “active” definitions. If we want to instantiate a brand

new entity, then our model is a construal of a system where agents are com-

pletely dynamic. This seems like a good metaphor of reality, where people

can enter or leave a situation, however there are criticisms of this technique
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when represented on a computer.

The tool must present a visual representation of the current state of the

model. This is very hard to do if the model is constantly changing shape, and

worse, it is very hard for the modeller to perceive the behaviour of the model,

when his only point of reference is the inconsistent visualisation. It would

be far better to have a consistent model “shape” and change the values of

the observables over time. This argument is analogous to the argument that

self-modifying computer programs are much harder to debug than programs

with a static structure.

This is not to be confused with the action of deleting and instantiating

performed by the modeller, which is a crucial part of the modelling process.

We are instead referring to the animated behaviour of a model, i.e. its defined

automatic behaviour, that the modeller must observe.

If we do not allow dynamic deletions and instantiations within actions,

that leaves the execution cycle to be a simple set of guarded redefinitions

of observables. Generally, a redefinition of an observable means discarding

the old functional definition and replacing it with a new definition. Trivially,

this means evaluations after the redefinition result in a different value.

Consider, instead of changing the definition from “o is f1(S1)” to “o

is f2(S2)” during an action, if the definition was originally of the form

“o is x?f1(S1):f2(S2)”, with the initial value of x being TRUE. Then the

action needs only redefine the literal value of observable x to FALSE, if a

guard is true.

Now our execution cycle is simply evaluating a set of guards, and for those

guards that evaluate to TRUE, assigning a particular value to an observable.

This value will then select the required dependency, using a definition. Since

the guards have referential transparency, this can be represented as follows:

guard -> obs1 = value

guard -> obs2 = value

guard -> ...

guard2 -> obs3 = value

guard2 -> obs4 = value

guard2 -> ...

...
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Since if the guard is false, nothing happens, we can represent this as

follows:

guard -> obs = value

!guard -> obs = |obs|

...

This can then be trivially re-arranged to:

TRUE -> obs = |guard ? value : obs|

...

We can factor out the expression into a definition of the form: “obs’ is

guard ? obsnew : obs”, and that leaves the execution cycle to simply be

a set of assignments of the form obs := obs’, where obs’ has been defined to

be a function of obs. This is directly analogous to the technique described at

the beginning of this chapter. It is also slightly better to express the change

of state with dependency, rather than imperative actions, because we can

observe what the next state will be (by evaluating obs’ before it is set to

obs) and also the reason that obs’ has the value it does, by tracing back

the dependencies. There is also the issue that the modeller should make

definitions that relate to his universal experience of the referent. If those

definitions are being replaced in order to represent animation, then the state

as experienced is being mixed up with the animation state of the model,

which might lead to confusion.

3.2 Study of Eden Representation

We have discovered that the fundamental power of actions, is in regular

prescribed observable reassignments. This maps very well to a technique

often used in Eden models to simulate the passage of time. Observe the

following transcript of an Eden session:

~empublic/bin/ttyeden

1|> state = 0;

2|> newstate is state + 1;

3|> while (1) { state = newstate; writeln(state); }

1
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2

3

4

...

We have defined the state transition function, and an initial state of 0.

The while loop is providing the functionality of the execution cycle, that of

continually evaluating “newstate”, and setting “state” to be that value.

Although this works, it is hard for the modeller to be involved in the

process. Ideally we would want to set the rate of execution cycles, and also

be able to manually step through an execution, one step at a time. We can

see however, that the expressive power of an execution cycle is being used,

under the guise of Eden’s lower level procedural features.

3.3 Clocked Instances and Evaluation Depen-

dency

The approach taken in the Asylum is analogous to the techniques used in

sequential logic circuits.

The first idea is like conventional Eden definitions, and the DEFINITION

part of ADM entities. Observables are linked with functional definitions to

create an acyclic network of dependency. This can be represented with a

graph of nodes and directed edges, the nodes representing observables, and

the edges representing dependency. This is a form of synchronised data-flow,

however we can observe the flow of data, compare with a referent and interact

with the graph to change its structure. This is an iterative process of trial

and improvement. If an edge is removed, the observable is undefined, in the

same way manner as in the original ADM.

Because some dependencies have more than one “operand”, we group

dependencies of this form with boxes. This is more clearly illustrated in

figure 3.1, which can be thought of as a “zoomed in” view of a set of defini-

tions. The observables are to the right of the boxes, where the arrows start.

The arrowheads of the dependencies point to the values “go in” to the op-

erator to be computed. Operators in dependency functions can be thought
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Figure 3.1: A dependency graph with operators represented with instances.

of as instances in their own right, with oracles, and an observable that is

“advised”.

In order to have the future state of an observable depend upon the current

state, we need to add a loop into this graph. We need to make it clear

that this loop-back edge is there to define animation state transition, rather

than a dependency in the conventional sense. Thus we have two kinds of

dependency. Directed dependency is propagated automatically, and thus the

modeller is never aware of any state of the model where the dependency is

not satisfied. Evaluated dependency means the operation simply reads the

value at the time the operation is calculated.

Evaluation dependency allows us to build models such as this integrator:

“integrator is x + |integrator|;”. When x changes, it is added onto

the current value in the integrator. This assumes that x is a source of agency

in this model, and the model is reactive in the way that it deals with this

agency. This can be thought of as reactive animation state, and could be

useful when implementing certain UI features on top of a model, such as

push buttons.

There is also a mechanism that re-implements the ADM’s execution cycle.

If an operator’s operands are all evaluation dependencies, E.G. “a is |b|
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+ |c|”, then that operator can be “clocked”. During an execution cycle (or

in the language of digital electronics, a “clock cycle”), all clocked operators

evaluate and compute their oracles. This is a source of agency since the

change will propagate down the directed dependencies.

There is one feature we yet need, and that is the ability to have an initial

state. Nodes that have an animated state (i.e. nodes that have evaluation

dependency edges leading into them) must have a well defined initial state.

This is allowed in the ADM because the definitions in the DEFINITION section

of an entity clause are taken to be the initial observable values, before any

execution cycles begin. If the initial state is undefined, then all the states

after this initial state will be also be undefined.

As with the ADM, there is a possibility of race conditions arising in mod-

els that are defined in this way. A race condition occurs where an observable

can be evaluated while it has not yet been updated properly. This has to

be prevented, in a similar way to the way circular dependency has to be

prevented. Typically, it seems that if a directed dependency will cause circu-

lar dependency, then evaluation dependency should be used instead, and if

an evaluation dependency will cause a race condition, directed dependency

should be used instead. Figure 3.2 shows the simplest possible models that

demonstrate circular dependency or a race condition.

In the presentation[3], there was reference to a kettle model, that modelled

the temperature of a kettle over time. It showed how the use of a thermostat

that turned on a coil if the water was below 80oC, but turned it off if the

temperature was above this level, would cause the temperature to stay at

approximately 80oC. A diagram of this model is included here (figure 3.3)

to demonstrate the application of evaluation dependency in a more complex

model.
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Figure 3.2: Circular dependency (left) and a race condition (right). Evalu-

ation dependency is represented with dotted lines, and directed dependency

with solid lines.

Figure 3.3: Model of a kettle. Note the use of the “var default” instance,

to give the loop an initial state.



Chapter 4

Nesting Instances

This is maybe the most successful feature of the Asylum implementation. It

aims to solve some of the problems present in Eden, with inspiration from the

ADM. The basic idea is that since operators can be thought of as entities, and

applications of these operators can be thought of as instances, that an entity

defined by the modeller is really defined in terms of a set of nested instances

linked together with dependency. So far this is just an interpretation of the

ADM’s mechanism, but we can extend it by saying that a “nesting entity”

can be defined in terms of any instances, not just instances of predefined

operations, but other nesting entities. A special root entity is defined, which

has one instance, the root instance, and in this root entity can be placed

instances of other entities.

4.1 Comparator Example

Figure 4.1 shows a model of a comparison network. The network contains

5 comparators, enough to sort 4 numbers. The comparator entity itself is

defined separately in a nesting entity, and instantiated 5 times. In order for

this to work, the instances are dealing with different information in their

different situations. Just like with the operations, or “predefined entities”

such as int min and int max, nesting entities have oracles and advice. The

oracles act as an input to the entity, and the advice allow it to export infor-

24
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Figure 4.1: Model of a comparison network that sorts 4 integers. We would

normally do something with the sorted numbers, but in this diagram the

arrows on the right hand side are not connected to anything.

mation to other instances. Within the comparator entity, the oracles, advice

and instances are linked together with dependency links.

Use of a nesting entity saves us some work in managing the model. Not

only can we avoid instantiating a pair of instances for each comparator, but

we can change the comparator entity in a subtle way, for example adding

an advice that exports a boolean value describing whether or not the pair of

oracles had to be swapped. Then this advice would immediately be available

in all the instances.

4.2 Theory

The construal is therefore divided into a nonempty set of entities. The most

trivial construal will simply have one entity, the root entity. More complex

construals will contain different entities modelling different aspects of the

situation, and these will be instantiated in the root instance, and each other.

These entities each contain some oracles, advice, instances, and dependency

links. The model is based at the root instance, and is defined to be a hierar-
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Figure 4.2: The instance tree. A, B, C, D, X and root are entities in the

model. Each box is an instance of one of these entities.

chy of nesting instances. We explicitly forbid the instantiating of an entity

within itself, either directly, or indirectly through the medium of another

entity. Figure 4.2, figure 4.3 and figure 4.4 illustrate the structure of and

relationships between instances and entities in an Asylum construal with six

entities, and a complex nesting of instances.

Predefined entities are written in C code, they implement such features as

addition, subtraction, or indeed any computation on data. In general, they

can be thought of as accessing native, or native library functionality, and

can thus be used to import any operating system features into the Asylum.

As well as side effects, predefined entities can also have a form of animation

state of their own, indeed this is a requirement if we are dealing with file

access and other persistent data. Predefined entities should also be a source

of agency. For example a predefined entity could represent the joystick, and

provide two advice observables, one for the X axis and one for the Y axis.

Nesting entities are defined in terms of other instances and dependency.

They can provide structure to a model, allowing the modeller to divide their

construal into sections. This is possible because of the instances are en-

capsulated inside the nesting instance, in an object orientated style. This

encapsulation means that the inside of an entity can have a different name

space. This solves one of the problems Eden has suffered for some time.
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Figure 4.3: This shows the relationship between the entities. If an entity is

instantiated inside another entity, there is a arrow from the outer entity to

the inner entity. Cycles are explicitly forbidden in this graph. Note that root

indirectly contains everything, and thus nothing can contain root.

Figure 4.4: This shows the design of the six nesting entities in the model,

and shows how the construal is partitioned into the six entities.
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Conventionally, when programming, we use re-usable components, or li-

braries, in our code. This helps us to implement something complex without

having to start from first principles each time. In Eden this is not really

possible because you cannot import a model alongside your model. Because

there is a single flat namespace in Eden, definitions from the library could

transparently overwrite the definitions in your model, and this would subtly

destroy the construal. Because the Asylum’s nesting instances have their own

namespace, it is conceivable that libraries of entities could be constructed,

that represent different people’s construals of different problems.

If someone implements a complex GUI widget, for example, they can

package it into an entity and make it available for other people to simply

import into their model and satisfy the oracle dependencies. In order for

Empirical Modelling tools to become more advanced, more expressive, and

more targeted for specific application domains (E.G. Primary school teach-

ing), this functionality is a must have. For very large models (and the symbol

table is already huge in Eden), being able to divide into a tree structure will

make models much more manageable. Also, suppose the tool was used in a

signal processing, engineering context, the tool could have a library of ana-

logue electronic components that could be used for making construals in this

domain.

We can also say something about the way that Human beings perceive

their environment in a structured way. Typically we do not build construals

with a flat structure of observables and dependency, but subdivide and divide

into increasingly simpler and more literal construals until we are dealing

with fundamental physical principles. For example, we think of a car as

having a few functions, such as driving, braking, and needing petrol. If we

are required to elaborate on this, we can think of it in terms of mechanics

and chemistry. Typically, we will avoid dealing with the low-level details

of a referent unless something about it is not consistent with our top-level

construal. For example, the car is simply something that we turn on and use,

until it breaks. In this case we would look under the bonnet to find more

information.
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4.3 Implementation

To be useful, any implementation of nesting entities must have the ability

to maintain the implicit dependency between entity and instances. In object

orientated programming, we typically are dealing with compiled code, and

if a change is made to a class, the re-compile and re-execution takes care

of mapping this change onto the instances. In an Empirical Modelling tool,

we do not have the luxury of being about to assume that the entity will not

change while instances exist. In general, all modifications to the model will

be in one of the entities. When a modification to an entity is made, the

tool must ensure that this change is repeated across all instances alive in the

model.

Trivially, we can see that with an adjustment in naming discipline, any

model built using a nesting entity framework can be re-implemented with a

flat structure. All we need to do is “flatten” the tree one level at a time.

This shows that an implementation of nesting entities is a form of sugaring,

wrapping around an implementation of flat entities. This is evident in the

ADM, which has a single definition store containing all the observables.

Because of this underlying flatness, it is not too difficult to implement

checking for cyclic dependency or race conditions, we just treat everything

as a flat surface of predefined instances and proceed as normal. There is one

snag however: We need to check the entity as well as all its instances, because

there is the possibility that the entity has not yet been instantiated, and thus

will have no presence on the flat surface. In the asylum, this is implemented

by using a reference instance for each entity, which is not strictly part of the

model, but still falls into the path of the checking algorithms.

It is of interest that Eden already has a form of this idea, called virtual

agency. This is like what has been described here, except that there is no

dependency maintained between the groups, and some definition from which

they are derived. I.e there is no dependency between entity and instance,

within the virtual agency framework. Virtual agency is just a way of imple-

menting a name-space within Eden, and usability problems with the syntax

make use of this feature less worthwhile than it deserves.
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Type

5.1 Definition of “Type” and “Type Safety”

Type is a very well known, but abstract concept. In order to justify its

inclusion in an Empirical Modelling tool, we have to make clear what it is

we mean by “type”. The definition follows from the knowledge that our

observables are information, and hence contain values. If an observable is

my name, it’s value would be “David”, my age in years would be 20. It is

possible to derive subsets from the set of all possible values, for instance the

set of all integers, or the set of all strings, and those sets are types.

Why do we might want to do this? When information is represented on a

computer as data, it is much easier to define computational operations that

work on specific sets of values. For example: there is no obvious meaning

to the application of the subtraction operation to two strings. We avoid this

problem by saying subtraction is only defined for numerical types (e.g. the set

of values that form a group under “-”). It follows that certain dependencies

cannot be made between certain observables, and that an EM tool must

enforce these restrictions. To do this, the Asylum must know what set of

values an instance can receive from its oracle, what possible values will be

emitted as advice, and what it takes for types to be consistent.

We could substitute the undefined value “@”, if an oracle provides an

instance with a bad value, but this would cause usability problems, since in

30
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almost every case, this situation will result from a mistake by the modeller,

and an undefined value will not be correct within their construal. It is better

to reject this dependency and give the modeller a message about the clash.

5.2 Type In Existing Tools

Let us review the type system present in the ADM implementation ‘am’

and in the EM tool Eden. Types are never an issue in ‘am’, because every

datum is an integer. This greatly simplifies the interpreter since it can avoid

this entire topic, but it reduces the expressiveness of the language, and thus

makes forming a construal more difficult, if impossible.

Eden, on the other hand, has many different types, including “float”

,“int”, “string”, and “list”. In many cases operators only apply to certain

cases and eden will prevent the modeller from making definitions that cause

type “clashes” for example:

1|> c is a + b;

2|> a = [1];

3|> b = 3;

/dcs/emp/empublic/linux-i686/bin/ttyeden-1.46: error: type clash: number type

required (got list) while executing file stdin near line 3, char 6:

b = 3;

From the first definition, we know that c, a and b must be the same

numeric type, since that is the type to which the operation “+” applies.

From the second definition, we know that a is a list. Since we know that

“+” cannot be applied to a list, an error should be presented at this point.

Unfortunately the type checking procedure does not seem to be active until

all the dependencies in the definition of a are met, so we get a misleading

error message when we try to (correctly) define b=3. Eden’s problem is

that it is checking the types of the operands when it performs an evaluation,

rather than checking the types when the definition is made. It turns out that

because of its design, Eden has no option but to do type checking this way.

This is not an Empirical Modelling problem, it does not affect the modeller’s

ability to build a construal, neither does it make the tool unstable, but it is

a usability problem.
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Where Eden does succeed is in making type checking very implicit. Some-

times the term “manifest typing” is used to describe a language where the

programmer defines the type of the data before using it, therefore making

the compiler’s type checking job very simple. (Another term for this is ’as-

cription’). We do not want to do that in Empirical Modelling since we want

the modeller to build a model that expresses their construal, in terms of

dependency, observation and agency. Type is an abstract notion that really

has nothing to do with artifacts or referents.

Clearly Eden does not meet the requirement that needs the modeller to

be informed as soon as possible when their construal is broken. There is a

term “dynamic typing” used to describe type checking that is done at “run

time”. We have to be careful with this definition, but even in Empirical

Modelling tools, where we have concurrent definition and evaluation going

on, the evaluation can be thought of as “run time” and the definition as

“compile time”. It is thus possible to say:

Eden is dynamically typed because it performs its type checking

procedure when definitive expressions are evaluated, not when

definitions are made.

What we really need is a system analogous to “static typing”, or “compile-

time type checking” where the problems are spotted when the modeller makes

the definition. This is not possible in Eden for two reasons:

• Often models are built where redefinitions occur automatically, rather

than under the modeller’s supervision, to implement animation, or sys-

tems that react in some way that cannot be modelled without giving

the system a definitive state that changes by itself. An alternative

approach is suggested in Chapter 3.

• Eden has a list data-type that is a hybrid of C’s array and struct data-

types. Not only can its members be accessed with an integer index, but

they do not have to all be the same type. That means that the type of

the result of a function expression will vary depending on the run-time
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value of its parameters, which makes static type checking impossible.

What is the type of a[i] in this example?

1|> a is [1,2,3,4,5,6,"7"];

2|> b is a[i] + 3;

3|> i = 1;

4|> while(1) { i++; } /* A relatively innocent operation. */

/dcs/emp/empublic/linux-i686/bin/ttyeden-1.46: error: type clash: number type

required (got string) while executing file stdin near line 4, char 17:

5.3 Type In The Asylum

In the Asylum I have implemented a system where a type is inferred from the

dependencies placed. It makes the system totally type safe without requiring

the modeller to explicitly define what types observables are. The available

types are:

• integer For discrete numbers, like counting sheep or selecting from a

list. Equivalent to the platform’s C “long” representation. Ideally we

would want an arbitrary precision integer for this job, since integer

overflow is unlikely to be part of every construal. Also, since different

platforms have different representations of the same C type, network-

ing different platforms (in the style of dtkeden) would not be easy. For

example, if we are transferring the value of an integer across a net-

work to a different host, running a different instance of the modelling

environment, the two hosts might have differently sized integer types.

This means overflow could occur over the network medium, and the

two models would not correctly share the same information. The best

we can do is agree on a standard representation, e.g. 32 bit twos com-

plement, and have the code at both ends tuned to provide this for the

specific platform. (I imagine this is how Eden does it).

• real For continuous data such as distances and velocities. Equivalent to

the platform’s C “float” representation. Again, an arbitrary precision

real number representation might be better.
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• string For incorporating text into a model. A UTF-8 encoded sequence

of Unicode characters. This means that the string can contain any char-

acter from any language, mathematical symbol, or presentation form.

So for example Korean or Arabic text can sit neatly inside Asylum

observable data of type string.

• array(τ) Where τ is another type. This type is for dealing with a

collection of identically typed objects of arbitrary size, for example a

school of fish. The important function of arrays is that while the model

is animating, the number of elements within the array can change, and

that this type encompasses all the possible lengths of arrays. This is

why all the types have to be the same, so that the type of an arbitrary

member can be determined statically.

• struct(τ0, τ1, τ2, ..., τn) Where each τ can be a different type. This allows

a ‘record’ of information, several observables to be grouped together in

one structure. This could be useful for holding physical properties of

an object, or for implementing a vector, or even a matrix. Since the

types inside the structure are static, in the same way that a number’s

type is static, there is no problem with static type checking.

Structs and arrays are equivalent to the struct and array types in C and

the tuple and list types found in functional languages. They separate the two

functions present in the Eden ‘list’ type: that of having a structured type

composed of lots of different observables, and that of needing to deal with

arbitrary sized collections of similar observables. Unfortunately although

the back-end Asylum code has support for arrays, this has not been brought

forward to the hive (because I ran out of time), and there is very little support

for structs even in the back-end. There is no reason why it could not still be

implemented, however, and I did have these types in mind when I developed

this design.

There are always operations that do not act on a specific type, or over-

loaded operators that can act on a range of types. For example, in Eden, the
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“+” operator can add both floats and integers. The “?:” operator (declara-

tive “if” statement) can apply to any type at all, E.G.

“a is 1?"hello":"world";”

or

“a is 1?1.5:3.5”.

This is because some operations make use of more general protocols that

can apply to a very wide range of data values. For example the action of

copying a value, used in the “?:” operation, can be applied to any value of

any type. This is often called “Polymorphism”, which in general describes

the application of some single protocol to a wide range of types.

To express the idea of ‘any type will fit’ notion, we can define a type

hierarchy with a root “wildcard” type, which can hold any value, and to which

generic protocols can be applied. This is inherited by all the other types,

each of which defines additional protocols that can be applied to the data,

and represents a subset of the set of values. When visualised in this ‘tree’

structure (this is not strictly a tree since some types inherit from multiple

types), the types within the Asylum appear as in Figure 5.1. Clearly because

of the infinite number of struct data types, the set of all types is unbounded.

In general, we tend to think of values as having the most concrete possible

types in the tree. This is because we try and be as specific as possible when

describing the type of a value, since this allows us more freedom to apply

whatever protocols we want. So we call [1,2,3] an array of integers, but it

is also an array containing any type, and it is a wildcard type. If one type

inherits another:

• It is a child of the type in figure 5.1.

• It can represent a subset of the values that the parent type can repre-

sent.

• Upon it can be applied any of the protocols that can be applied to the

parent type.

• There may exist some protocols that can be applied to the child, but

not the parent.
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Figure 5.1: The hierarchy of possible types in the Asylum design

The oracles, and advice of any instance in the Asylum, will each have an

active type from the tree. For example in the predefined entity arr lookup,

is provided the capability to extract a member from an array. One oracle

provides the array, another provides the index, and there is a single advice

that provides the specified member data, see Figure 5.2. Clearly the index

should be of integer type, and because we’re looking up the member of an

array, the array should of type array(something), in fact an array of any-

thing. I have used the compact notation int for integer type, [τ], for an

array of some type, {τ0, τ1, τ2, ..., τn} for structures and * for wildcard type.

This means an ‘array of anything’ has type [*].

These types represent restrictions placed on the data, and these restric-

tions stem from the nature of the entity’s programmed behaviour, and thus

are fundamental. For that reason they are called the “principal” types. This

terminology comes from the Hindley-Milner type inference system used in

many functional languages. As I have come to understand, there is an al-

most complete intersection between type theory in functional languages and

in what I wanted to implement in the Asylum.
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Figure 5.2: The oracle and advice of the arr lookup predefined entity.

Now we understand what types different oracles and advice provide, the

rest of the problem is in finding out if an oracle and an advice can be con-

nected. Trivially they are compatible if both types are the same. But what

about when we want to use the arr lookup entity with an array of integers?

Clearly we can look up a member of an array of integers just as well as we

can look up a member from any other type of array so this is safe.

When a dependency is made by linking an oracle to an advice, the value

held by those two observables is identical. Since the set of possible values is

the same at both ends, the type is the same at both ends. Before the link

is made, the ends each have their own types, and therefore support different

sets of values. When the link is made, we have to take the intersection of

the types to ensure that values are acceptable at both ends. This means the

types might become more constrained.

The types of oracles and advice actually change when a link is made, so an

oracle might have an active type which is more restrictive than its principal

type. In this case the oracle changes from [*] to [int]. This forces the

advice to change type to int as well, but for now we shall concentrate on

the intersection of the types [*] and [int].

In general, we are looking to take two types, τ0 and τ1, and producing a

third type τ2 that will replace both. This type might not necessarily be a

copy of either, for instance the structure {int,*} and the structure {*,int}

intersect to give {int,int}.
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τ0 τ1 Unify(τ0,τ1) =

* * *

a * a

a a a

a b Unify(b,a)

real int reject dependency!

[a] [b] [Unify(a,b)]

{a0,...,an} {b0,...,bn} {Unify(a0,b0),...,Unify(an,bn)}

Table 5.1: Interesting properties of the function that attempts to unify the

types at either end of a dependency.

The type τ2 is a child of both τ0 and τ1, and thus inherits both of their

capabilities, and can represent the intersection of their values. We have no

need to make the new type any more restrictive than it needs to be, so

we choose the least specific type of the possible candidates. Implementing

this algorithm is almost trivial with the Asylum data-types. This process

is called unification of types, and is represented in the code by the function

asylum type weakestmatch(). Table 5.1 shows some of the results of this

function.

This only leaves the matter of how the types of oracles and advice of an

instance can be interdependent. This is necessary because otherwise oper-

ations with more than one operand cannot be supported. In the Asylum,

instances receive messages when their type changes, and they act on this by

maybe changing some of their other oracles/advice to match, and propagat-

ing the change. For example on hearing that it’s oracle had changed type

from [*] to [int], an arr lookup instance would change its advice’s type

to int and notify any dependents of that advice.

This process is an explicit part of a predefined instance’s programmed

behaviour. In conclusion these type conditions must be met at all times in

the Asylum:

• Type at either end of a dependency must be the same.
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• There may be type interdependencies between instances that must be

maintained.

• Every advice and oracle of an entity has a principal type that arises

from its defined behaviour.

• Every advice and oracle of an instance has an active type that arises

from its entity’s principal type, and any dependencies in place with

other instances.

• The acting type of a nesting entity’s oracle or advice must be the same

as any advice or oracle it is connected to, both instances nested within

the entity, and instances that instances of the nesting entity are linked

to.

If these conditions are met, we can avoid the overheard of dynamic type

checking, and check for type safety when dependencies are placed.

5.4 Comparison To Type In Functional Pro-

gramming

Take the following example, written in SML:

- fun arr_lookup (x::[]) n = x

| arr_lookup (x::xs) 0 = x

| arr_lookup (x::xs) n = arr_lookup xs (n-1);

> val ’a arr_lookup = fn : ’a list -> int -> ’a

The types of the function (compare to entity) have been inferred from

the recursive definition, as a “’a list” ([*]), an int (int), and “’a” whatever

type was inside the list (*). In the next bit of code, we apply the function in

the context of looking up an index of a list of reals (compare to instantiating

the entity and connecting its oracle to a list of reals).

- fun f n = arr_lookup [1.0,2.0,3.0,10.0,2.0] n;

> val f = fn : int -> real
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The SML interpreter unifies the type ’a list with real list, and thus

the value returned by the function (the advice) is constrained to a real as

well.

5.5 The Implementation

There is no one area of the Asylum’s code where type is programmed. Rather

there are a group of functions that are useful for working with types, and

the actual type code is distributed around. Each predefined entity defines

the principal type of its advice and oracles, and this type is the initial acting

type of new instances. When a new oracle or advice is added to a nesting

entity, it has a principal type of [*]. We can think of this as the base case

in an inductive proof that the Asylum is type safe. See figure 5.3 for an

illustration of a model with no dependency and all active types set to the

principal type. The types are displayed in pairs, e.g. *,*. The first type is

the principal type, the second, the active type.

As dependencies are added to the model, the types will change in the

manner described above. See figure 5.4, the same model with dependencies

linking everything together. It is trivial to see how types spread through the

Asylum. When a new link is placed, a message is sent to the instances at

both ends. They each re-evaluate the acting types of all their oracles and

advice, and send messages on to their dependent or depending instances. If

the type does not need changing, no more messages are propagated. A wave

of messages is passed from instance to instance until all the types settle into

a consistent pattern.

The code that does the actual re-evaluation of acting types, and the

propagation of messages, is held within each predefined instance. This allows

each instance to have different principal types and different interdependencies

between its oracles and advice. It would be better for the type propagation

algorithm to be factored out and generalised into a library function, where it

can be considered bug free, and optimised. This has not been done, however,

and at this time all predefined instances have to contain code to propagate
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Figure 5.3: A demonstration of principle types in a model with no depen-

dency. Note that array is a fictional predefined entity that simply provides

an array of reals.



42 CHAPTER 5. TYPE

Figure 5.4: A demonstration of active types in a model, arising from depen-

dency.
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Figure 5.5: A more complicated model.

messages to their dependent neighbours.

It is less trivial to see how the types should be released when a link

is removed. Clearly we need to re-evaluate the type at both sides of the

deleted link, but how do we know what the new type should be? It must be

somewhere between the principal type and the old type, but it is difficult to

know the extent of influence that the deleted link had on each instance.

To clarify this problem, the act of deleting a link, is equivalent (in terms

of the resultant observable types) as removing every link, then relinking

everything except the link that we wanted to remove. The problem can

be simplified into a graph problem: Observe the model in figure 5.5. This

model uses two new entities - the identity entity simply copies its oracle

onto its advice, and the var if entity chooses between its oracles iftrue

and iffalse depending on whether its oracle condition is 0(false) or some

other number(true). In Eden, we might represent this model as so:

lookup_member is lookup_array[lookup_index];

id1_in is lookup_member;

id1_out is id1_in;

id2_in is lookup_member;

id2_out is id2_in;

if_iftrue is id1_out;

if_iffalse is id2_out;

if_result is if_condition ? if_iftrue : if_iffalse;

lookup2_member is lookup2_array[lookup2_index];

lookup2_array is if_result;

It takes a while to understand, but lookup array must contain a list

of lists (or an array of arrays in the Asylum). This is a demonstration of
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Figure 5.6: The same model as figure 5.5, simplified.

how although the flow of information in a dependency network is an acyclic

directed graph, the flow of type is not directed, and thus cycles can arise. In

this model, the type flows from the “end” of the model to the “beginning”,

from the instance called “lookup2”.

The following code demonstrates what happens in Eden if we fail to use

a list of the correct type on the far left of this model (note we have to fill in

all the undefined oracles before the type error is shown):

11|> myarray is [1,2,3,4,5];

12|> myindex is 1;

14|> if_condition is 1;

15|> lookup_index is myindex;

13|> lookup2_index is myindex;

16|> lookup_array is myarray;

/dcs/emp/empublic/linux-i686/bin/ttyeden-1.46: error: index error: list or

string required (got int, when trying to find 1th item) while executing file

stdin near line 16, char 24:

lookup_array is myarray;

This error complains that the members of the list myarray are integers,

rather than lists, (or strings which can also be used with the a[i] syntax).

When we simplify this model into a graph of connected nodes, we get fig-

ure 5.6. So we can see that the principal type of the observable lookup2 array

has spread throughout the model. Now if we delete the link ending at the

array oracle belonging to the lookup2 instance (this link is dashed in fig-

ure 5.6), we must change the active types of many of the observables in the

model. An informal study of this specific example shows us that the types
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Figure 5.7: A node in the Asylum’s type release algorithm. The function

u(...) means “The unification of a set of types”

to the left of the deleted link should all decay to their principal types, but

what kind of algorithm could decide this in the general case?

5.6 A Difficult Problem

The algorithm present in the Asylum is not quite correct, it fails to relax the

types fully when there is a cycle in the graph. You can work around this by

breaking and relinking the cycle, but this is not really ideal from a usability

perspective. The algorithm works by recording the types that flow into the

nodes, from all directions, and using this information to project the types

out of the node in the other directions. If a node is connected to 4 other

nodes (and hence has 4 edges connected to it), there will be 4 types recorded

coming into that node, and 4 types will be generated leaving the node. For

an arbitrary edge attached to a node, the type flowing out of that node is

the unification of all the types coming into the node, except the type coming

in along the same edge. See figure 5.7.

I felt it would be beneficial to store a small amount of localised infor-

mation to help the algorithm make its decision with minimal computational

expense. By recording what edge the type came from, it seemed that we

would know to back down if that edge was removed. Unfortunately this ap-

proach assumes that the type which is being projected out, along an edge,
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Figure 5.8: A simple model where the type back tracking mechanism fails.

will never find its way back to the node down another edge. This assump-

tion breaks down in the case of a cyclic graph. The simplest model that

demonstrates this failing is a single var if instance, linked in a circle (this is

possible with evaluation links). The type of the result should decay back to

* after the link to the condition oracle is removed (this model is graphically

represented in figure 5.8) Unfortunately it remains as int type. Here is a

transcript of a session in the “shiver” shell that demonstrates this “feature”:
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shiver$ load lib/plugins/libstd.so var_if 3 1 condition iftrue iffalse result

Done.

shiver$ addinst root var_if if

Adding an instance of var_if in root called if... Done.

shiver$ elink root if result if iftrue

Done.

shiver$ elink root if result if condition

Done.

shiver$ inspect /if/result

Observable: 0x805f23c has type integer and is compromised.

@

shiver$ unlink root if condition

Done.

shiver$ inspect /if/result

Observable: 0x805f23c has type integer and is compromised.

@

//$ SHOULD BE "has type * and is compromised."

It is interesting to note that conventional functional programming lan-

guages have not run into this problem at all. The reason is that declarative

languages typically do not support this interactive mode of operation, and

removing the application of a function is impossible. Even in interpreters

like mosml and GHCi, it is not possible, the closest equivalent operation is

to create a new definition with the same name. This of course simply infers

the types from scratch all over again.

I have concluded that there is no trivial algorithm for solving this prob-

lem. Interestingly, the problem itself is almost identical to the problem of

generalised garbage collection - that of knowing if part of a graph (in this case

used to model a data structure) is totally isolated from a given root node.

My current solution is like that of reference counting for garbage collection,

it is flawed in the case of cyclic graphs. Solutions to the garbage collection

problem (such as mark and sweep) are specialised for that problem. If there

is a solution to the back-typing problem, it would most likely take advantage

of the specific character of the problem, rather than utilising some general

technique that would work for an arbitrary graph.

It appears that the only ways to determine what to do in this situation,

are computationally intensive (e.g. re-inferring the active type for every node

when an edge is removed) or memory intensive (e.g. recording all the indirect
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links to each node, at each node). This may sound bad, but in reality it is

only a factor to be added to the task of detecting cyclic dependencies and

race conditions, which is also intensive. The business of type checking a

dynamic computational system, like so many other aspects of an Empirical

Modelling tool, seems to be very expensive in terms of system resources.

Having said this, an Empirical Modelling tool absolutely requires a static

type checking algorithm. There are mistakes that the modeller can make,

and the quicker he is informed of such problems, the easier it will be for

him to build a construal. Like other computationally intense algorithms that

must be used, this is simply another complexity to consider when creating

an Empirical Modelling tool.



Chapter 6

Development of the Asylum

This chapter is concerned with the details of implementing the Asylum de-

pendency maintenance library in C. This includes design decisions made,

software engineering techniques used, and the algorithms and ideas used to

implement the various interesting features of the Asylum. At the end of this

chapter is a section to explain how to use the Asylum source package, and

run the “Shiver” Asylum shell interpreter.

6.1 Design

6.1.1 Structure

The Asylum package has a tier architecture: At the lowest level we are dealing

with the support library Glib, and various native features. Directly above

this is a dependency maintainer (often referred to as “The Asylum”) and a set

of predefined instances that can be plugged into the dependency maintainer.

Above that is a symbol table, which effectively mirrors the Asylum’s API,

but provides names for the various beings within the Asylum (instead of

numbers or pointers) and catches some errors. This API is called “The Hive”

and is useful for implementing friendly user interfaces (such as Shiver). The

Hive also has the ability to load plug-in library files from disk, and extract

predefined entity definitions from these library files, for use in the internal

Asylum.

49
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Figure 6.1: Top level overview of the Asylum project.

On top of the Hive lies the only user interface that exists at the moment,

“Shiver”. This is just a shell that provides a command line interface to

calling the Hive’s functions. Figure 6.1 illustrates the design of the project.

Ironically, because Shiver is a tool that exists to demonstrate the features

and power of the Asylum, rather than being a useful Empirical Modelling

tool, it suffers from many of the problems that “am” faces. It is probably too

much work to implement both the back-end and the front-end of an Empirical

Modelling tool. Hopefully, since the back-end of the Asylum is practically

complete and well documented, people can use it in future. On the other

hand, people often want a specific maintainer, and interfacing with someone

else’s arbitrary code can be more work than re-writing it yourself.

The advantage of dividing the project up into these parts (apart from the

ability to test the different components individually), is that certain appli-

cations of the Asylum could use the dependency maintainer in an embedded

way. The idea was someone could develop a model using the interactive front

end, save it, and then embed it into a program, E.G. a game. The game could
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link with the Asylum API, and use the dependency maintainer without the

overhead of the symbol table or the user interface getting in the way.

6.1.2 Early Decisions

As mentioned in section 2.5, the Asylum’s dependency maintenance back-

end was designed to present a set of very short interactions to the modeller.

Rather than having to provide a complete entity, the Asylum is designed to

allow an Entity to be built up in small sections, and be instantiated and

modified at the same time.

So in contrast with traditional tools that parse a string of input, and make

quite a large change to the observables and dependencies being represented

within, the Asylum has a large number of functions that can be called to make

small changes. These functions include things like putting an instance into

a nesting entity, or adding an oracle to a nesting entity. Each function has

an associated “undo” function that performs a similar function to building

the model from scratch without that feature present (although obviously it

does not do it this way). This means the number of possible sequences of

interactions that will result in a given model, is extremely vast. This is what

we want, because we are empowering the modeller with choice, and room to

experiment. We also need to forgive the modeller for mistakes, so that a real

process of trial and improvement can develop.

It is quite tricky to implement this dynamic strategy for the following

reasons:

• We have no control over the order in which interactions occur. We have

to deal with the undefined behaviour of an instance without oracles

connected. We have to propagate changes throughout the network

when changes are made. We have to deal with changes made to entities

both before and after instances are made.

• We have to deal with dependencies in the structure of the model, that

is if an instance or oracle is deleted, any links to this oracle or advice
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must also be deleted. This includes links from the oracle to the in-

stance inside the entity, and links from the instances of this entity, to

other instances, that lie alongside them. If an entity is deleted, all its

instances, and any links to its instances, must be deleted as well.

On top of this, we have to check the types of oracles and advice before

making any links. If an entity’s internally unlinked oracle, is externally linked

in two different instances, to two different types, we have to make sure that

the internal link is to an instance that can support both of these types. In

other words, we have to enforce the polymorph-ism of entities.

As mentioned before, implementing nesting instances can be thought of

as a virtual layer on top of an implementation of predefined instances. We

simply have to project the modifications of the nesting entity itself, onto all

instances of the entity. The oracle and advice connections are just place-

holders, that record what internal instances must be connected to external

interfaces when a “virtual” connection is made. There are in fact 3 layers in

the Asylum:

• The nesting entity layer is the point of contact with the modeller. Most

modeller actions are contained within a nesting entity. For example we

can add an instance or make a link within an entity. If we are “clocking”

an instance, we clock a specific instance within an entity. This layer

simply projects the modifications onto the nesting instances, if there

are any, and keeps a record of the changes in a template file that is

used to make new instances.

Note that there will always be at least one instance of each nesting

entity, the reference instance. As described in section 4.3, this is neces-

sary to check an entity before it is instantiated. If we do this, we only

need logic that checks for problems within the instances. As it turned

out, this is not such a good idea because instances have side effects,

and thus the reference instance is not transparent to the modeller. (It

appears as a phantom instance that causes side effects that they have

no control over). To correct this, we either need to scrap the reference
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instance idea, or implement some mechanism for disabling side effects

within the reference instance.

• The nesting instance layer takes the modification and projects it onto

the “flat” predefined instance layer below. For some modifications, like

the clocking of an instance, or the linking of two instances inside a

nesting instance, this is trivial. Where modifications involve the advice

or oracles of a nesting instance, it is more involved, since we must

determine what predefined instances external to the instance are being

affected by the modification.

• The predefined instance layer deals with joining together predefined in-

stances in a manner which implements the behaviour of multiple nesting

instances.

6.2 Tools and Methodologies

C is a flexible, portable language. There are many libraries that the Asylum

could link to, that can extend its functionality. C also compiles natively,

without the overhead of a virtual machine. This makes it very fast during

run time. The use of Glib as a portability wrapper and as a source of ab-

stract data structures such as re-sizable arrays, event loops, and hash-tables,

meant the programming task was focused on the more important details of

implementing the Asylum’s algorithms.

Although C is not an object orientated language, it is possible to write

object orientated software in it. As an analogy, C is not a safe language, as

it is possible to write C code that has undefined behaviour, but it is pos-

sible to write safe software in C, if we are aware that we are not invoking

this undefined behaviour. In a similar manner, C has support for structures

and pointers, which can be used to implement the features of encapsulation,

polymorph-ism and late binding that we would expect from an object ori-

entated system. The nature of instances and entities is that there are two

distinct types (predefined and nesting) that present the same interface, and
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the fact that a large number of specific predefined instances were created

with different functionalities adds to this. By inheriting from a common

base type, we factor out common code and present a polymorphic interface

to other functions, which allows the Asylum to be easily extended by adding

in new predefined entities. This is a stylistic design decision, which makes

the Asylum’s code slightly more elegant.

To implement inheritance with C structures, we make the first element of

the child structure an instance of the parent structure. Since the structures

are aligned at the first byte, we can transparently treat the child structure

as an instance of the parent structure. By using function pointers inside

the parent structure, that are overridden by the child constructor, we can

execute a specific function at run time, that depends on the specific instance

we are dealing with. The calling function need not know what the instance

is, it can just call the function.

C is not a safe language, so to make the Asylum programming task easier,

a tool called Valgrind was used. Valgrind can run native C code in a sandbox,

essentially an x86 emulator, which is programmed to spot bugs as early as

possible, and hence make debugging much easier. Many bugs in a C program

will simply cause a segmentation fault, or invoke some undefined behaviour

which is very hard to trace. Valgrind gives the programmer the ability to

spot these problems early on and deal with them. As well as array overruns

and null pointer dereferences, Valgrind can keep track of allocated memory,

and detect memory leaks. This is an invaluable tool when developing C

programs, and every C programmer should use it.

Because of the nature of the development process in a language like C, it

can be quite hard to have much involvement in the execution process. If the

program does not quite behave as we expect, we must use a debugger to trace

exactly what is going on. GDB is an excellent command line debugger that

allows us to insert break points in our programming code, trace executions,

and give stack traces at any stage. If the software is compiled with debugging

symbols, we can step through a program a line at a time, as if it were an

interpreted script. This is vital when debugging the behaviour of complex

and intricate algorithms.
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In the code itself, special macros were used to aid the debugging and

development process. Three levels of DEBUG macros were used to display ver-

bose messages relating to the processes occurring inside the software. This

verbosity can be “compiled out” of the final software, after testing has oc-

curred. A FIXME macro was used in places where code was yet to be written,

or known bugs were yet to be fixed. The behaviour of this macro was to

print a message in red text on the console, showing what the problem was,

and the exact C file and line number where the FIXME was located.

Because the expected behaviour of the Asylum API was known before it

was implemented, it was possible to design small tests that used this API.

Extremely simple models, such as an ascending sequence of numbers, were

constructed in little C programs that simply called the API functions to build

and execute the model. In “extreme programming” style, these tests were

used as a point of reference for determining how much work remained to be

done. Once the “shiver” shell had been written around the Hive API, tests

were no longer needed since it was possible to interact with the Asylum in a

much more dynamic way.

As mentioned in section 2.5, the original “am” implementation was poorly

documented. In order to avoid this problem in the Asylum, a tool called

Doxygen was used. Doxygen produces HTML, man, and latex documenta-

tion automatically, from comments written in a special format in the source

code. This is ideal, since the comments can be maintained along with the

source code itself, making for more reliable documentation. This documen-

tation is suitable for people making use of the Asylum as a library, and for

people thinking of understanding the Asylum’s code itself. The ratio of com-

ments to actual code in the Asylum, is well over 2:1. The documentation

has complete coverage and is reasonably detailed, especially when compared

alongside other Empirical Modelling tools and open source projects that the

author has experienced.

Flex and bison (previously lex and yacc) were not used in the shiver tool.

This is because the interaction with the model is so fine-grained that a syntax

is not needed. Instead, libreadline was used. Libreadline is a Unix library

that allows interactive use of stdin. It supplies a command history, which
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can be searched, and also tab completion. This is a much better solution to

the problem, than the grammars used by “am”, and has more in common

with ttyeden.

6.3 Instance Representation

The use of natively compiled C code to implement predefined instances, gives

us not only the ability to do computations such as addition and subtraction,

but to interface with external libraries. It is possible for an instance to make

use of, E.G. a cryptography library to encrypt data supplied through its

oracles. A predefined instance could maintain, or perform queries on an SQL

database. Predefined entities should also be able to be used as a source of

agency, however this has not been implemented in the Asylum. The only

source of agency is modeller input to change values and dependencies, and

the clocking mechanism.

Because we have such tight control of the entity within the C code, we can

implement interesting instances that do more than model a simple operator

or function. A good example of this is the var default entity, used to

implement the initial animation state, when using a loop back evaluation

dependency. This predefined entity has two oracles, and one advice. Under

normal operation the observable data simply flows straight through, but if the

data is undefined (“@”), it is substituted with the value on the other oracle.

This allows us to break the loop of undefinition that is initially present when

we make a loop back dependency.

It also has interesting applications when packaging behaviour into nesting

entities. We can provide a default value for oracles that are not satisfied. This

is actually implicitly used in Eden’s donald and scout notations. If there

is a broken dependency somewhere leading up to a graphical display, the

graphical display simply draws a grey window instead. In general, we do not

want the whole model to fall to pieces if there is one undefined observable, so

occasionally we will want to use default values to keep the model usable while

modifications are made. This is analogous to the use of “pull up resistors”
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at the interfaces to circuit boards, in digital electronics.

Because there are a large number of entities that are very similar, E.G.

entities that implement arithmetic operations, a method was devised for au-

tomatically generating code for these predefined entities, based on a much

shorter description. This basic description would include the names and types

(which must be concrete, i.e. these auto-generated entities are monomorphic

rather than polymorphic) of the oracles and advice of the entity. The de-

scription also includes a small segment of code that is used to recompute

the advice based on the oracles, when the oracles change value. Here is an

example of a description of a monomorphic entity that computes the “≤”

operation. (Note the use of the DEBUG macro to print a debug message

when the calculation is performed.)

ORACLE_TYPES=’a=INTEGER=sizeof(glong) b=INTEGER=sizeof(glong)’

RESULT_TYPE=’glong’

NEW_RESULT_TYPE=’INTEGER’

ORUP_PREPARE_RESULT=’inst->result_data = *(glong*)inst->a.obs.data <=

*(glong*)inst->b.obs.data;

DEBUG3r(g_print("(%ld<=%ld)=%ld\n",

*(glong*)inst->a.obs.data,

*(glong*)inst->b.obs.data,

inst->result_data ));’

These mini descriptions are processed by a bash script, and merged into

a “template” C file, to produce some auto-generated source code, which then

compiles into the predefined entity.

Predefined instance constructors have an argument, which can be an ar-

bitrary array of bytes, and can thus be used to transfer arbitrary information

to the constructor of the instance. In general it was decided that arguments

for nesting entities have no real value, since information can be imported

into the entity through oracles. In the original ADM, arguments are re-

quired because all of the observables sit in the same namespace. Clearly this

is no longer required. In some predefined entities, however, arguments are

useful to augment the definition of the entity. For example in the definition

of the “integer” predefined entity, that supplies a literal integer, we would

normally require a different entity to represent each number. This is not
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necessary however since we can supply the specific number as an argument

to the instance’s constructor.

This is not to be confused with the act of modifying the predefined in-

stance’s observable after it is instantiated. This is possible, but these changes

are carried out in the context of a nesting instance, not a nesting entity. We

modify the value of an observable in a specific nesting instance, whereas with

the constructor argument, we modify the nature of the observable in all in-

stances currently alive, and the instances yet to be made. The constructor

argument can be thought of as supplying an initial, or default value, which

can afterwards be changed by the modeller. Most predefined entity construc-

tors, and all nesting entity constructors ignore this argument, however.

6.4 Agency

In a C program, our “agency” is always supplied by a file descriptor. This

allows us to interact with the system, and hence IO peripherals such as mice

and joysticks. It also allows us to use the network as a source of agency. In

general we must poll this file descriptor to see if there is agency pending,

that needs to be dealt with. This is possible using an event loop.

An event loop is a technique often used in GUI toolkits, where the pro-

gram has to deal with multiple different sorts of events (or agency), such

as mouse and keyboard interaction, timers, watching files stored on disk,

and network activity. The principle is to keep a set of polled file descriptors

open, and a set of functions assigned to deal with an event, if it is raised. If a

mouse click occurs, a set of functions are called to deal with this mouse click.

This allows us to concurrently deal with (and wait upon) multiple sources of

agency without using threads.

In the Asylum, we could use an event loop to watch a number of sources

of agency, including the modeller making modifications to the model, any

graphical interface the model has, and the sort of user interface hardware

used to make models more realistic (E.G. a steering wheel). If an event

is detected, we can change the value of an observable, and propagate this
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change to the observable’s dependent instances.

Another form of agency is the activity of the modeller editing the value

of the advice of certain instances. This causes the propagation of change

through the model that we associate with agency. This activity is subject to

certain restrictions, we cannot allow the concurrent updating of two observ-

ables that depend on each other, since this causes a race condition. This is

the mechanism used to communicate values to the embedded model in the

9.gtkblocks.bin program.

A third form of agency has already been the subject of much discussion

in this report, and that is the clocking of instances to allow the animation

of state over time. The modeller adds instances to a set of “clocked in-

stances”. When the clock tick occurs (when this happens is controlled by

the modeller), all the clocked instances evaluate their oracles and update

their dependents with new advice. Again we have to prevent race conditions

caused by concurrently updating two dependent observables.

This concurrency of agency is implicit in clocked agency, but explicit

in the editing observables activity, where each edit is a separate function

call of the Asylum or Hive API. When we have made all the concurrent

changes, we call a special function that commits the changes to the Asylum.

This functionality is similar to the command “autocalc”, in Eden, which

temporarily disables the resolution of dependency while we make concurrent

changes, and also the “commit” functionality within the Java dependency

maintainers.

6.5 Observable Representation

In the asylum, observables are represented with an arbitrary length piece of

data. Some observables, such as those of those of integer type, have a fixed

length that never changes. Others, such as strings and arrays, have a variable

length that can change during agency events. When dealing with arbitrary

observable data types, in polymorphic predefined entities, we must ensure

that we can deal with arbitrary sized data as well.
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There is thus a special format for storing each observable data segment,

and this format is determined by the type of the data. Integer and real data

is simply copied into a sufficiently large block of allocated memory. On x86

platforms, this is 4 bytes, but this can vary on other platforms. String data

is encoded (using the UTF-8 encoding) as a NUL terminated array of bytes,

of arbitrary size.

Arrays of data have a more complex structure. Since the elements in the

array have arbitrary size, despite all being the same type, we need to provide

an index at the beginning of the array. The array is a block of memory, the

first few bytes contain an integer representation of the number of elements

in the array. After this, there is a number for each member of the array, this

number is the number of bytes into the array, that each member is located.

After this index, each member is represented back to back, the first part of

each member block is the size of the member.

This has been implemented inside the Asylum’s predefined entities that

deal with arrays, “arr compose”, an array aggregate, “arr lookup”, which

is used to access an arbitrary member of an array by its index, and the pair

“int arr sum” and “real arr sum”, which perform arithmetic on arrays.

Writing platform independent code to deal with memory at this low level

was quite difficult, since alignment issues had to be taken into account.

The struct representation was never attempted inside the Asylum, but

should be much more simple than the array representation.

Of interest, is the manner in which the array aggregate “arr compose”

predefined instance functions. The purpose of this instance is to take a

collection of identically typed observables, from various instances, and collect

them into a single array observable. This cannot be done with a conventional

instance, since each observable would have to connect to its own oracle, and

the number of oracles is fixed. Because of this limitation, the instance has

a dynamic set of oracles. There is always one oracle that is undefined, if a

connection is made to this oracle, another oracle is spawned “underneath”

it. This way, observables can be connected to the instance indefinitely.

An alternative strategy for achieving this, is an array aggregate that

takes an integer parameter, and has that many oracles. This would mean
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if a new observable was to be added to the array, the instance would have

to be deleted, and re-instantiated. In either case, the precise detail could

be implemented by the user interface, and the modeller would only need to

know that he is collecting many observables into an array.

6.6 Algorithms

There are a number of interesting algorithms in the Asylum. The last chapter

focused on the algorithms used to implement type checking and propagation.

Another algorithm is used to propagate data through the Asylum, to resolve

dependencies.

Instances are able to send and receive specific messages. A message can

be sent to an instance’s oracle to tell it that the data has been updated, for

example. These messages are used for the type propagation algorithm, as

well as the data propagation algorithm. This message sending is actually

implemented with a function call, to send a message to an instance, you call

a function, specific to that instance’s entity, specifying the advice, oracle,

and message that you want to send. The actual action carried out by the

instance, depends on its internal state. Thus the messages can be thought of

state transitions.

When agency occurs, and the value of an advised observable changes, the

following sequence of actions occurs: Firstly a message is sent to all oracles

that depend upon this advice, telling them the value is about to change. The

dependent instances then send more messages to their dependents, until this

dirty signal has propagated into every instance that will be affected by the

change. After this, the value is changed, and another message is propagated

through the model, instructing instances to re-evaluate their oracles. Because

it is possible for the flow of information to fork, and then come back together

again (in general, models are directed acyclic graphs), some instances may

have two or more of their oracles “dirtied” by the “will change” signal. In

this case, these instances must not re-evaluate their oracles and re-compute

their advice until all of the affected oracles have been declared “stable” by
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their dependencies.

This mechanism acts in a similar manner to a mutex, causing an instance

to wait until its oracles are stable before using the contained observable data.

A similar, but distinct method is used to implement the clocking agency, a

dirty signal is sent, followed by a stabilising signal. There are also signals

to inform instances that their observables are being linked, or unlinked, and

thus the instances can propagate the undefined value through the model.

Ultimately, the predefined instances have the final say in whether or not

a “compromise” signal (used to inform instances of broken dependency) is

sent, so it is possible to design fancy instances that use the “@” value for

reasons other than a broken dependency. One example is the “var default”

instance, another is advising the “@” value, if we try and look up an array

index that is out of the bounds of the array.

Algorithms were never written to detect infinite dependency, or race con-

ditions. It should not be too difficult, however, to do this. It is just a matter

of recursively spanning the network, looking for an instance that indirectly

depends on itself, and looking for a pair of instances linked with an evalua-

tion dependency, that both indirectly depend on the same source of agency.

The main issue with these algorithms is the time they take to compute, but

because they are computed at “modelling time”, rather than while the model

is animating, this is not as serious a problem as it is in Eden.

6.7 Compiling and using the Asylum

Compiling the Asylum package requires development libraries for GTK+ 2.0,

libglade-2, Glib 2.0 and libreadline.

Unpack the source archive, enter the asylum directory and type “make”.

This should compile all the libraries and executables that are known to

work well. The reader will most likely be interested in running the program

“shiver”, which makes use of the libraries “libhive.so” and “libasylum.so”.

This can be executed like so:

spark@stealth:~/asylum$ LD_LIBRARY_PATH=lib bin/shiver
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This allows the shiver executable to locate the libraries it needs. Observe

the *.hv scripts in the “share” directory, for some of the possible commands

that can be entered into the shiver shell. Beware that the lexer is not very

good, and does not strip off whitespace present at the end of command lines!

To execute the gtk blocks demo, which uses a model to internally guide the

motion of two blocks, move to the share directory, and execute the following:

spark@stealth:~/asylum/share$ LD_LIBRARY_PATH=../lib:../lib/plugins \

../bin/9.gtkblocks.bin

The documentation is generated with the “make” command, and can be

found in the doxygen output directory. The Doxyfile present in the root of

the asylum package is suitable for the version of doxygen present on DCS

machines at the time of writing. In the future, it may be necessary to upgrade

this file using the doxygen executable installed on the system.
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Future Directions

7.1 Graphics

Eden has supported the two notations “Scout” and “Donald” for some time

now. Together they are a powerful tool for implementing graphical envi-

ronments such as user interfaces, and symbolic representations of observable

structures within the model.

It is possible to implement similar functionality within the Asylum, but

instead of being a notation, the system would revolve around special data

types and predefined entities. A predefined entity could load a raster image

from disk, further entities could process it in several different ways, involving

cropping, stretching, combining with other images. Finally a predefined en-

tity could draw the raster image onto the screen, in the form of a conventional

window.

To implement the vector graphics functionality of donald, we could use

an array of polygon types, which could be built up using array entities,

dependent upon integer coordinates. This could then be rendered into a

raster image and displayed as explained above.

In order to implement this, we could link the Asylum with a graphical

toolkit such as GTK+. To get user input, we could have an advice of the

window predefined instance, that supplied the current mouse coordinates,

and the last clicked mouse coordinates. We could set up instances to depend
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on these instances in the same way as is often used in Scout.

7.2 User Interface

At the moment the “shiver” shell suffers from many of the usability problems

that the original “am” implementation was criticised for in section 2.5. This

interface to the Asylum does not do justice to the Asylum back-end, however,

and it should be possible to create a much more usable user interface, with

plenty of feedback and model visualisation.

One such interface could be a “canvas” style of interface, where nesting

entities are designed by “drag and drop”ing instances onto a nesting entity,

and connecting them together with arrows. This interface could display the

current value and type of every observable.

Much could be said here about the role of graphical “language” in the

design of computer software, indeed a formal study in Semantology might

be recommended. On the surface, it seems rational to believe that any such

symbolic language should be as expressive as any syntactic language, and

should be no slower to work with. In fact there are many domain spe-

cific applications of this idea, see Klogic[11], a digital circuit designer, and

Labview[12].

Syntax has unbounded expression, since you can just keep executing com-

mands, building upon the hidden state. Syntax, however can be very ab-

stract, and precise, and hence not as approachable as graphics.

Certainly, we can say that a graphical application is much harder to

develop, since this area of understanding is so immature. It may take some

time to get the interface quite right. If successful, however, the benefits in

terms of model visualisation would be enormous.

7.3 Optimisations

There will come a time, when models are sufficiently large that the amount

of CPU time required to animate them, gets in the way of the construal.
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In traditional programming paradigms, much of the program is static, and

things like constant variables can be used to optimise the native code at

compile time. This is obviously not possible in Empirical Modelling, and if

it becomes necessary to compete with traditionally developed software (as

Java has succeeded in doing), then here are suggested some techniques for

optimising the algorithms within the Asylum.

There are two stages present, that which the model will do by itself,

automatically (to represent some animated motion within the construal), and

that which the modeller causes by making changes to the model. All of the

optimisations presented here rely on the presence of an option to temporarily

mark an entity “immutable”. An entity treated in this way would behave just

like a predefined entity. It would be impossible to modify, and impossible

to look inside. This would obviously harm the tool’s effectiveness as an

Empirical Modelling tool, but, we would leave out the entities that we are

focusing our attention on. The modeller cannot observe everything at once,

so it makes sense to make transparent optimisations in the parts of the model

where the modeller is not looking.

Optimisations in the dependency resolution stage could be made by using

a JIT (“Just In Time”) compiler. This would compile the instances and

dependencies in a model, into a few assembly instructions, with a massive

reduction in overhead.

Optimisations in the linking stage would consist of improving the perfor-

mance of the type release algorithm, the circular dependency checking, and

the checking for race conditions. The only way to do this (aside from coming

up with a better algorithm) is to pre-process the nesting instances that are

being closed. In this way, we save continually passing through the same parts

of the graph.

We must be careful not prematurely optimise the system however. It is

far more important to demonstrate that the system is sufficiently expressive

in terms of representing state as experienced, and it will be quite some time

before models get complex enough to put stress on the hardware of modern

computer systems.
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7.4 Advanced Dependency

There is a limitation in the concept of dependency. This is illustrated when

we try and use dependency to do operations on arrays (which by nature

have arbitrary length). The problem is that a dependency specifies a finite,

bounded amount of computation. In order to perform computations on an

unbounded data-structure, we need an unbounded amount of computation.

In procedural languages, this is provided with a while loop, or at a lower

level, by a goto statement. In a functional style, we typically use recursion.

Since definitions are so powerful at representing “cause and effect”, how can

unbounded computation be achieved in a definitive notation?

7.4.1 Recursion

If we take inspiration from functional languages, we can see that recursion

provides a representation of unbounded computation. This can be imple-

mented in the Asylum by nesting an instance of a nesting entity, in the

entity itself.

In order to do this, we need a base case, and some form of pattern match-

ing that causes the the base dependency to be resolved instead of the recursive

entity. We also have to somehow guard against infinite recursion. Figure 7.1

illustrates an implementation of Euclid’s algorithm with a recursive nesting

entity.

The problem with recursion is that it is at best intricate and bizarre, and

at worst, completely non intuitive. For these reasons it is probably best not

suited to an Empirical Modelling tool.

7.4.2 Higher Order Agency

We do not have to use recursion in functional languages, in order to process

lists, however. Many functional languages have a concept known as “higher

order functions” that maps well onto our definitive notations. The idea is to

produce a very reusable component, that factors away the unboundedness of
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Figure 7.1: An implementation of Euclid’s algorithm. Note the base case is

when “small” is 0, i.e. false.

the computation as much as possible. It turns out that many array operations

fall into a few categories. Here are some examples:

• Mapping is the act of applying the same behaviour to every element in

an array.

• Filtering is the act of applying a predicate to every element in an array,

in order to create a smaller array.

• Folding is the act of taking a list and producing a single value that is

derived from every element of the list (such as an integer total).

In order to create a predefined instance that can factor out this function-

ality, we need to be able to supply some behaviour to the instance, as well

as the list observable itself. This means that the instance is not depending

on just the list, but also another instance, which it is applying to each of the

elements of the list (in the case of map). In conclusion, to support this idea,
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we need instances to be able to advise themselves, as observable behavioural

specifications.

This is, in the author’s opinion, the best way of solving this problem.

7.4.3 Procedural Code

The way Eden solves this problem is to use procedural while loops to iterate

through lists. This could be implemented in the Asylum, in the following

manner.

First, we require a special predefined instance, with two oracles, and one

advice. The first oracle is of string type, and contains a program, written in

a special language. The second oracle would contain data that the program

could read (but not write to). The advice would be the output from the

program.

The language in which the procedural code could be written, could be

almost anything. We could use Eden’s notation or something that already

exists for this purpose, like Perl, or Lua, or PHP. We could even invent and

interpret our own special language for this purpose.

This idea might be useful if some algorithms are simply best expressed

with procedural code.
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Conclusion

We have studied the ADM, and its original implementation, “am”, and dis-

covered many flaws in its design. We have also endorsed and extended parts

of the ADM. Of particular success has been the nesting entity idea, and

type checking. The evaluation depedency idea, that allows us to implement

temporal dependency, has shown to be quite expressive, but might be too

abstract for Empirical Modelling.

The new strategy of partitioning the model into nesting entities has

proven to be very easy to implement, and has increased the managability

of Empirical Models. It would most likely be beneficial to implement this

feature within the Eden tool. Static type checking has proven to be both pos-

sible, and extremely useful, but however harder to implement. Because of

its design, it may be impossible to implement a static type checking function

within Eden, which is a shame, since it makes the tool more usable.

The idea of using graphics instead of language, as a medium for modeller

interaction, is probably too radical for inclusion in an Empirical Modelling

tool at this time, but it does seem to show some promise for the representation

of model behaviour, and the finer grain of modeller agency. We can conclude

that this idea deserves further attention, and definitely a proof of concept

implementation, maybe extending what has already been achieved with the

Asylum.

Many parallels have been discovered between the technical side of defini-
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tive notations, and that of functional programming languages. Especially

in the field of adaptive functional programming. Ideas such as higher order

agency can increase the effectiveness of definitive notations while keeping ab-

straction to the minimum. In particular, this allows the interactive mode of

development that we see degrading during use of procedural Eden code. Def-

initely, some research[7] [8] into such adaptive functional domains as arrows

and monads might be beneficial.

In terms of the direct materialistic benefit of this project, we can conclude

that the Asylum, although not strictly complete, has provided a good proof

of concept implementation for new ideas such as static type checking, nesting

instances, evaluation dependency, clocking and the slightly different style of

interaction with the model.

Whether these ideas are useful for representing state as experienced, is a

difficult question to answer objectively. However, at least now there can be

a direct comparison between the implementations, and it is clear what kinds

of models are best expressed in the Asylum. The most useful benefit from

this work, has been the reinvestigation of ideas from the ADM, ideas which

although quite good, have unreasonably been left in the past.
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Appendix A

The blocks model in the

Asylum

This report contains many small examples of shiver scripts, designed to il-

lustrate certain features of the Asylum system. This, on the other hand, is

a very large model (in comparison) that demonstrates the scalable nature of

the Asylum. The model is presented as a series of graphical visualisations,

in the same style as other parts of this document.

The model:
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