
Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Universe Types for Race Safety

Dave Cunningham
(PhD student of Susan Eisenbach, Sophia Drossopoulou)

Imperial College London

VAMP
03/09/2007

Universe Types for Race Safety 1/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Race Conditions

Race conditions:

I are bugs in shared memory concurrent software.

I are caused by incorrect synchronisation.

I are hard to reproduce.

I can corrupt program state.

I can lead to strange program behaviour.

Testing hard... =⇒

Static type system?

Can prove it correct...

Universe Types for Race Safety 2/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Race Conditions

Race conditions:

I are bugs in shared memory concurrent software.

I are caused by incorrect synchronisation.

I are hard to reproduce.

I can corrupt program state.

I can lead to strange program behaviour.

Testing hard... =⇒ Static type system?

Can prove it correct...

Universe Types for Race Safety 2/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Race Conditions

Race conditions:

I are bugs in shared memory concurrent software.

I are caused by incorrect synchronisation.

I are hard to reproduce.

I can corrupt program state.

I can lead to strange program behaviour.

Testing hard... =⇒ Static type system?

Can prove it correct...

Universe Types for Race Safety 2/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Instantaneous Race Condition

A state where two threads can access the same object:

We prove such states never arise during execution.

Universe Types for Race Safety 3/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Object Accesses and Locks

If we know that:

I No two threads simultaneously hold the same lock.

I Threads only access objects for which they hold the lock.

Then: Threads will never simultaneously access an object.

Universe Types for Race Safety 4/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

General Approach

Enforcing synchronisation is the key:

sync (e’) {

...
e.f = 10;
...

}

Require that e’ is guarded by the same lock l:

`gb e’ : l
`gb e ′: l

Universe Types for Race Safety 5/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

General Approach

Enforcing synchronisation is the key:

sync (e’) {

...
e.f = 10;
...

}

Require that e’ is guarded by the same lock l:

`gb e’ : l
`gb e ′: l

Universe Types for Race Safety 5/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Example

Universe Types for Race Safety 6/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Motivation
The Problem
The Solution

Type System (for illustrative purposes only!)

∅ ` this
(Var)

L ` e
`gb e : l
l ∈ L
L ` e.f

(Field)

L ` e ′

`gb e ′ : l
L ∪ {l} ` e

L ` sync e ′ e

(Sync)

L′ ` e
L′ ⊆ L
L ` e

(Sub)

Now we need only define `gb (the hard bit).

Universe Types for Race Safety 7/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A first attempt at defining `gb

Paths are sequences of field accesses starting from a variable e.g.

I x.f.g

I this.first.next.next

We use them to statically characterise objects.

If we let `gb p : p
(i.e. the set of all locks = the set of all paths)

Then we allow: sync (p) { ... p.f=20 }

Universe Types for Race Safety 8/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A first attempt at defining `gb

Paths are sequences of field accesses starting from a variable e.g.

I x.f.g

I this.first.next.next

We use them to statically characterise objects.

If we let `gb p : p
(i.e. the set of all locks = the set of all paths)

Then we allow: sync (p) { ... p.f=20 }

Universe Types for Race Safety 8/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A first attempt at defining `gb

Paths are sequences of field accesses starting from a variable e.g.

I x.f.g

I this.first.next.next

We use them to statically characterise objects.

If we let `gb p : p
(i.e. the set of all locks = the set of all paths)

Then we allow: sync (p) { ... p.f=20 }

Universe Types for Race Safety 8/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

Derivation tree with paths

Universe Types for Race Safety 9/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A problem

∅ ` sync (x) { x=y ; x.f=20 }

∅ ` sync (x) { x=y ; x.f↑ accesses the object y

similarly...
{x} ` sync (x.f) { x.f=y ; x.f.g=20 }
{x} ` sync (x.f) { x.f=y ; x.f.g↑ accesses the object y

Solution – restrict such assignments.

How does this affect expressiveness?

Universe Types for Race Safety 10/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A problem

∅ ` sync (x) { x=y ; x.f=20 }
∅ ` sync (x) { x=y ; x.f↑ accesses the object y

similarly...
{x} ` sync (x.f) { x.f=y ; x.f.g=20 }
{x} ` sync (x.f) { x.f=y ; x.f.g↑ accesses the object y

Solution – restrict such assignments.

How does this affect expressiveness?

Universe Types for Race Safety 10/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A problem

∅ ` sync (x) { x=y ; x.f=20 }
∅ ` sync (x) { x=y ; x.f↑ accesses the object y

similarly...
{x} ` sync (x.f) { x.f=y ; x.f.g=20 }
{x} ` sync (x.f) { x.f=y ; x.f.g↑ accesses the object y

Solution – restrict such assignments.

How does this affect expressiveness?

Universe Types for Race Safety 10/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

A problem

∅ ` sync (x) { x=y ; x.f=20 }
∅ ` sync (x) { x=y ; x.f↑ accesses the object y

similarly...
{x} ` sync (x.f) { x.f=y ; x.f.g=20 }
{x} ` sync (x.f) { x.f=y ; x.f.g↑ accesses the object y

Solution – restrict such assignments.

How does this affect expressiveness?

Universe Types for Race Safety 10/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

Iteration

class Node { Node next; int cargo }

Node i = ...;
sync(i) {

while (i!=null) {
i.cargo = 20;
i = i.next;

}
}

Here, assigning to i conflicts with the locking of i

Universe Types for Race Safety 11/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

Iteration

class Node { Node next; int cargo }

Node i = ...;
sync(i) {

while (i!=null) {
i.cargo = 20;
i = i.next;

}
}

Here, assigning to i conflicts with the locking of i

Universe Types for Race Safety 11/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Introduction to Paths
Restricting Assignment
Ramifications

What does this tell us?

This demonstrates that:

I 1:1 locking (`gb p : p) is unfeasable.

I E.g. many nodes should be guarded by 1 lock.

I This allows granularity control, and iteration.

I (`gb) is now a many-to-1 relationship:

`gb i : l
`gb i.next : l
`gb i.next.next : l

I Need to be careful with assignment.

Universe Types for Race Safety 12/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Carving the Heap

Artist’s impression of a heap:

Universe Types for Race Safety 13/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Carving the Heap

Artist’s impression of a heap:

Universe Types for Race Safety 13/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Regions

Other work has used a programmer-supplied set, e.g. {RED, BLUE}
The source code looks like:

RED Object r = new RED Object();
BLUE Object b = new BLUE Object();

r = b; //not allowed

void m(RED Object x, RED Object y) {
x = y

}

m(r,b); //not allowed

Universe Types for Race Safety 14/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Regions as Locks

Suppose we already have a region type system:

Γ ` e : R

Γ `gb e : R

Note we now need a Γ in
the race type system too:
L, Γ ` e : F

RED Object r1, r2 = ...
BLUE Object b = ...

sync(r1) {
b.f = 10; // not allowed
r2.f = 10; // OK

}

Universe Types for Race Safety 15/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Regions as Locks

Suppose we already have a region type system:

Γ ` e : R

Γ `gb e : R

Note we now need a Γ in
the race type system too:
L, Γ ` e : F

RED Object r1, r2 = ...
BLUE Object b = ...

sync(r1) {
b.f = 10; // not allowed
r2.f = 10; // OK

}

Universe Types for Race Safety 15/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Regions as Locks

Suppose we already have a region type system:

Γ ` e : R

Γ `gb e : R

Note we now need a Γ in
the race type system too:
L, Γ ` e : F

RED Object r1, r2 = ...
BLUE Object b = ...

sync(r1) {
b.f = 10; // not allowed
r2.f = 10; // OK

}

Universe Types for Race Safety 15/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Regions as Locks

Suppose we already have a region type system:

Γ ` e : R

Γ `gb e : R

Note we now need a Γ in
the race type system too:
L, Γ ` e : F

RED Object r1, r2 = ...
BLUE Object b = ...

sync(r1) {
b.f = 10; // not allowed
r2.f = 10; // OK

}

Universe Types for Race Safety 15/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Iteration Example

class Node { RED Node next; int cargo }

RED Node i = ...;

sync (i) {
while (i!=null) {

i.cargo = 20;
i = i.next;

}
}

Universe Types for Race Safety 16/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Summary

Carving up the heap helps us verify safe locking:

I x.f = y ; x.f.g = 10
(must lock l where Γ `gb y : l)

I Regions restrict assignment only where the lock changes.

I x.f = y ensures Γ `gb x .f : l

Universe Types for Race Safety 17/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Summary

Carving up the heap helps us verify safe locking:

I x.f = y ; x.f.g = 10
(must lock l where Γ `gb y : l)

I Regions restrict assignment only where the lock changes.

I x.f = y ensures Γ `gb x .f : l

Universe Types for Race Safety 17/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap
Regions
Regions as Locks

Summary 2

Advantages of carving with regions:

I Simple

I Inference is easy

Disadvantages of regions:

I Lock count does not scale with object count

Regions used by:

I Guava – D. Bacon, R. Strom, A. Tarafdar (OOPSLA’00)

I Sync... with data – M. Vaziri, F. Tip, J. Dolby (POPL’06)

I Locksmith – P. Pratikakis, J. Foster, M. Hicks (PLDI’06)

Universe Types for Race Safety 18/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Carving the Heap Again

Ownership types impose a heap hierarchy:

Can use the “owner” of an object as its lock.

Universe Types for Race Safety 19/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Carving the Heap Again

Ownership types impose a heap hierarchy:

Can use the “owner” of an object as its lock.

Universe Types for Race Safety 19/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Universes

Universes form this hierarchy with 3 keywords

peer
rep

any

The keywords indicate the relative position of the referenced object.

Universe Types for Race Safety 20/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Example

class C {
peer Object m(peer Object x) {

peer Object y = new peer Object();
rep Object z = new rep Object();
x = y;
x = z; // not allowed
any Object a = z;
z = a; // not allowed
return y;

}
}

this

z
y

x

a

rep Object o = new rep C().m(new rep Object());

Universe Types for Race Safety 21/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Background of Universes

Universes

I are an ownership type system (see Peter Müller’s thesis).
I have the any type (unique to universes).
I are simple.
I are used in the JML (verification) tools.

(1) Dept

(5) Student

(3) Student(2) DeptStudentNode

(4) DeptStudentNode

(8) Hall

(9) HallStudentNode

(10) HallStudentNode

(11) HallStudentNode

(7) Student

. . .

(6) Dept

Universe Types for Race Safety 22/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Synchronisation

Let’s assume have a sound universe type system Γ ` e : u

(where u ∈ {rep, peer, any})

We can use this to define:
Γ ` e : u

Γ `gb e : u

peer Object x = new peer Object();
peer Object y = new peer Object();
rep Object z = new rep Object();
sync (x) { y.f = 20 } // OK
sync (x) { z.f = 20 } // error!

this

z
y

x

Universe Types for Race Safety 23/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Synchronisation

Let’s assume have a sound universe type system Γ ` e : u

(where u ∈ {rep, peer, any})

We can use this to define:
Γ ` e : u

Γ `gb e : u

peer Object x = new peer Object();
peer Object y = new peer Object();
rep Object z = new rep Object();
sync (x) { y.f = 20 } // OK
sync (x) { z.f = 20 } // error!

this

z
y

x

Universe Types for Race Safety 23/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Iteration

class Node { peer Node next ; int cargo }

rep Node i = ...;
sync (i) {

while (i!=null) {
i.cargo = 20;
i = i.next;

}
}

Universe Types for Race Safety 24/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Problem with any

Problem:

any Object x = new peer Object();
any Object z = new rep Object();
sync (x) { z.f = 20 } // OK, but race condition!

Solution:

Γ ` e : u
u 6= any
Γ `gb e : u Γ `gb p : p

Universe Types for Race Safety 25/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Problem with any

Problem:

any Object x = new peer Object();
any Object z = new rep Object();
sync (x) { z.f = 20 } // OK, but race condition!

Solution:

Γ ` e : u
u 6= any
Γ `gb e : u

Γ `gb p : p

Universe Types for Race Safety 25/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Problem with any

Problem:

any Object x = new peer Object();
any Object z = new rep Object();
sync (x) { z.f = 20 } // OK, but race condition!

Solution:

Γ ` e : u
u 6= any
Γ `gb e : u Γ `gb p : p

Universe Types for Race Safety 25/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Examples

peer getPeer() { ... }
any getAny() { ... }

any Object x = ...;
peer Object y = ...;
rep Object z = ...;

sync (x) { x.f } // OK (path)
sync (y) { y.f } // OK (path) (universes)
sync (y) { z.f } // error!
sync (getPeer()) { y.f } // OK (universes)
sync (getAny()) { x.f } // error!
sync (x) { x=... ; x.f } // error!
sync (x) { x.f ; x=... } // error! (not flow sensitive)

Universe Types for Race Safety 26/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Conclusion

Advantages of ownership:

I Locks scale with size of program

Disadvantages of ownership:

I Require ownership annotations

Notions of ownership also used by

I C. Flanagan et al (ESOP’99, CONCUR’99, PLDI’00, LICS’00,
TLDI’03, PLDI’03, SAS’04, POPL’04, SPIN’04, TLDI’05,
ECOOP’05)

I C. Boyapati et al (OOPSLA’01,OOPSLA’02)

I Autolocker – B. McCloskey et al (POPL’06)

Universe Types for Race Safety 27/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Summary

We have

I given a race-safety type system that uses a `gb judgement.

I Shown the weakness of a path-based `gb p : p

I put objects into boxes and restricted assignment

I with a static set of regions, and
I with dynamic set of universes that grows at runtime

in order to build a more powerful `gb.

I used the simple path-based `gb with the universes `gb, to
allow locking of any.

Universe Types for Race Safety 28/29

Fundamentals
Paths

Regions as Boxes
Universes as Boxes

Carving the Heap Again
Universes
Synchronisation
Conclusion

Atomicity

A race-safe block of code is atomic if its sync. is two-phase:

// GOOD

atomic {

sync (x) {

sync (y) {

...

...

}

}

}

// BAD

atomic {

sync (x) { ... }

sync (y) { ... }

}

// UGLY (but good, and useful too)

atomic {

sync (x) {

sync(y) {

sync (x) {

...

}

sync (y) {

...

}

}

}

}

Universe Types for Race Safety 29/29

	Fundamentals
	Motivation
	The Problem
	The Solution

	Paths
	Introduction to Paths
	Restricting Assignment
	Ramifications

	Regions as Boxes
	Carving the Heap
	Regions
	Regions as Locks

	Universes as Boxes
	Carving the Heap Again
	Universes
	Synchronisation
	Conclusion

