
© 2009 IBM Corporation

Resilient X10
Efficient failure-aware programming

Dave Cunningham, Dave Grove, Ben Herta, Arun Iyengar , Kiyokuni Kawachiya, Hiroki Murata, Vijay Saraswat ,

Mikio Takeuchi, Olivier Tardieu

PPoPP 2014

© 2009 IBM Corporation

Resiliency Spectrum

2

MPI

Existing X10

(fast)

Hadoop

Checkpoint & Restart

X10-FT

(slow)

Resilient X10 (fast)

Non-resilient / manual Transparent fault tolerance

Node failure is a reality on commodity clusters

• Hardware failure

• Memory errors, leaks, race conditions (including in the kernel)

• Evictions

• Evidence: Popularity of Hadoop

Ignoring failures causes serial

MTBF aggregation:

24 hour run, 1000 nodes,

6 month node MTBF

=> under 1% success rate

Transparent checkpointing

causes significant overhead.

Failure awareness

© 2009 IBM Corporation

Resilient X10 Overview

3

Provide helpful semantics:

• Failure reporting

• Continuing execution on unaffected nodes

• Preservation of synchronization: HBI principle (described later)

Application-level failure recovery, use domain knowledge

• If the computation is approximate: trade accuracy for reliability (e.g. Rinard, ICS06)

• If the computation is repeatable: replay it

• If lost data is unmodified: reload it

• If data is mutated: checkpoint it

• Libraries can hide, abstract, or expose faults (e.g. containment domains)

• Can capture common patterns (e.g. map reduce) via application frameworks

No changes to the language, substantial changes to the runtime implementation

• Use exceptions to report failure

• Existing exception semantics give strong synchronization guarantees

© 2009 IBM Corporation 4

X10 Language Overview (Non-distributed features)

 Java-like language

 Developed ~ 10 years (open source)

 Structs (compound value types)

 Reified Generics

 Activities

– Lightweight threads

– Exception propagation

– Atomic construct

Resilient X10 Review

struct Complex {

 val real : Double;

 val imag : Double;

}

class Test {

 public static def myMethod(p:Complex) : Complex {

 return Complex(p.real+1, p.imag-1);

 }

 public static def myMethod2(p:Rail[Complex]) {

 for (i in 0..(p.size-1)) {

 p(i) = myMethod(p(i));

 }

 }

}

class Test {

 public static def main(args: Rail[String]) {

 finish {

 async {

 Console.OUT.println("1a");

 }

 async {

 Console.OUT.println("1b");

 }

 }

 Console.OUT.println("2");

 }

}

Possible interleavings:

 1a

 1b

 2

Or:

 1b

 1a

 2

© 2009 IBM Corporation 5

X10 Language Overview (Distributed Features)

 Scales to 1000s of nodes

 Asynchronous PGAS (APGAS)

– Heap partitioned into „places‟

– Can only dereference locally

 Explicit communication

 Implicit object graph serialization

Resilient X10 Review

Heap object „Place‟ „Activity‟ „GlobalRef‟

class MyClass {

 public static def main(args:Rail[String]):void {

 val c = GlobalRef(new Cell[Long](0));

 finish {

 for (p in Place.places()) {

 at (p) {

 async {

 val v = ...; // non-trivial work

 at (Place.FIRST_PLACE) {

 val cell = c();

 atomic { cell(cell() + v); }

 } } } } }

 // Runs after remote activities terminate

 Console.OUT.println(“Cumulative value: "+c()());

 }

}

0 1 2 3

Cell[Int] object

Main activity at (p) { … }

at (Place.FIRST_PLACE)

val x = ...;

val y = ...;

at (p) {

 val tmp = x + y;

}

© 2009 IBM Corporation

Resilient X10 (Language design)

Immediate Consequences:

 The heap at that place is lost

 The activities are lost

 Any „at‟ in progress immediately terminates with x10.lang.DeadPlaceException

 (Very similar to java.lang.VirtualMachineError)

6

0 1 2

Sometimes, an arbitrary place may disappear.

Lasting Consequences:

Place will never come back alive.

Can no-longer at (dead_place) {…} – get DeadPlaceException thrown.

GlobalRef[T] to objects at that place may still be dangling…

But type system requires use of „at‟ to access that state.

Code can test if a given Place value is dead, get list of alive places, etc.

© 2009 IBM Corporation

Resilient X10 Simple Example

class MyClass {

 public static def main(args:Rail[String]):void {

 val c = GlobalRef[Cell[Int]](new Cell[Int](0));

 finish {

 for (p in Place.places()) {

 async {

 try {

 at (p) {

 val v = ...; // non-trivial work

 at (Place.FIRST_PLACE) {

 val cell = c();

 atomic { cell(cell() + v); } // cell() += v

 }

 }

 } catch (e:DeadPlaceException) {

 Console.OUT.println(e.place+” died.”);

 }

 } } }

 // Runs after remote activities terminate

 Console.OUT.println(“Cumulative value: "+c()());

 }

}

7

Revision of earlier example for failure-reporting X10:

© 2009 IBM Corporation

Special treatment of place 0

 Activities are rooted at the ‘main’ activity at place zero.

 If place zero dies, everything dies.

 The programmer can assume place 0 is immortal.

 MTBF of n-node system = MTBF of 1-node system

 Having an immortal place 0 is good for programmer productivity

– Can orchestrate at place 0 (e.g. deal work)

– Can do (trivial) reductions at place 0

– Divide & conquer expressed naturally

– Can do final result processing / user interface

 However…

– Must ensure use of place 0 does not become a bottleneck, at scale

 Future work:

– Transparent fault tolerance for place 0 only (checkpoint the heap).

8

A

A A

A A

© 2009 IBM Corporation

Happens Before Invariance (HBI) Principle

Failure of a place should not alter

the happens before relationship.

9

finish

activity

finish

activity

Place 0 Place 1

val gr = GlobalRef(new Cell[Int](0));

try {

 finish at (Place(1)) async {

 finish at (Place(0)) async {

 gr()(10); // A

 }

 }

} catch (e:MultipleExceptions) { }

gr()(3); // B

assert gr()() != 10;

A happens before B, even if place 1 dies.

Without this property, avoiding race conditions would be very hard.

But guaranteeing it is non-trivial, requires more runtime machinery.

Waits-for

graph

Implied

synchro-

nization

orphan

© 2009 IBM Corporation

HBI – Subtleties

Relationship between at / finish and orphans

Orphaned activities are adopted by the next enclosing synchronization point.

at (Place(1)) { finish async S } Q // S happens before Q

finish { at (Place(1)) { async finish async S } Q } // S concurrent with Q

Exceptions

Adoption does not propagate exceptions:

at (Place(1)) {

 try {

 finish at (Place(0)) async { throw e; }

 } catch (e:Exception) { }

}

// e should never appear here

10

© 2009 IBM Corporation

Implementation: X10 Architectural Overview

 async { … }

 finish { … }

 at (p) { … }

11

X10 application

 at (p) async { … }

 here

 launching processes

 OS threads

 Serialization

Runtime stack:

Key:

Java

X10 runtime

C++ runtime
Java runtime

JNI wrapper

X10RT (network layer)

… MPI PAMI
Sockets

C++

X10

© 2009 IBM Corporation

Implementing Resilient X10 (X10RT)

Focus on sockets backend

 We have complete control

 Handle TCP timeouts / connection resets gracefully

 Communicate failures up the stack

 Assume no failure during start-up phase (this is short compared to a 24 hour execution)

Changes to X10RT API:

Simple c++ code to send an asynchronous message and wait for a reply (via X10RT API):

12

x10rt_send_msg(p, msgid, buf);

while (!got_reply) {

 x10rt_probe();

}

int num_dead = x10rt_ndead();

x10rt_send_msg(p, msgid, buf);

while (!got_reply) {

 int now_dead = x10rt_ndead();

 if (now_dead != num_dead) {

 num_dead = now_dead;

 // account for failure

 break;

 }

 x10rt_probe();

}

becomes

© 2009 IBM Corporation

Implementing Resilient X10 (Finish)

The implementation reduces ‘at’ to a special case of ‘finish’.

Abstractly, finish is a state machine, see paper for details.

The finish state itself must be resilient, to allow adoption of orphaned activities.

We tried 3 approaches for implementing resilient finish, tested up to 416 places:

 Store all finish state at place zero.

– Simple, makes use of „immortal‟ place zero.

– For finishes logically at place zero in the code, this is optimal anyway.

– For finishes logically at other places, more communication required.

– Bottle neck at place zero.

 Store all finish state in ZooKeeper

– Too much overhead.

 Distributed resilient finish.

– Finish state is replicated at one other node.

– Execution aborted if both nodes die.

– After optimization for immortal place zero, best all round performance

– No bottle neck at place zero

See paper for performance results

13

© 2009 IBM Corporation

Application – K-Means (Lloyd‟s algorithm)

Resilient X10 Review

Machine learning / analytics kernel.

Given N (a large number) of points in 4d space (dimensionality arbitrary)

Find the k clusters in 4d space that approximate points‟ distribution

^ N=11, k=2

•Each cluster‟s position is iteratively refined by averaging the position of the set of points for

whom that cluster is the closest.

•Very dense computational kernel (assuming large N).

•Embarrassingly parallel, easy to distribute.

•Points data can be larger than single node RAM.

•Points can be split across nodes, partial averages computed at each node and aggregated

at place 0.

•Refined clusters then broadcast to all places for next iteration.

Resiliency is achieved via decimation

•The algorithm will still converge to an approximate result if only most of the points are used.

•If a place dies, we simply proceed without its data and resources.

•Error bounds on this technique explored in Rinard06

Performance is within 90% of non-resilient X10

© 2009 IBM Corporation

Application – Iterative Sparse Matrix * Dense Vector

Resilient X10 Review

Kernel found in a number of algorithms, e.g. GNMF, Page Rank, …

An N*N sparse (0.1%) matrix, G, multiplied by a 1xN dense vector V

Resulting vector used as V in the next iteration.

Matrix block size is 1000x1000, matrix is double precision

G distributed into row blocks. Every place starts with entire V, computes fragment of V‟.

Every place communicates fragments of V to place 0 to be aggregated.

New V broadcast from place 0 for next iteration (G is never modified).

Code is memory-bound, amount of actual computation quite low

Problem is the size of the data – does not fit in node.

G is loaded at application start, kept in RAM between iterations.

Resiliency is achieved by replaying lost work:

•Place death triggers other places to take over lost work assignment.

•Places load the extra G blocks they need from disk upon failure

100x faster than Hadoop

Resilient X10 ~ same speed as existing X10

G V V‟ =

© 2009 IBM Corporation

Application – Heat Transfer

Resilient X10 Review

Demonstration of a 2D stencil algorithm with simple kernel

An N*N grid of doubles

Stencil function is a simple average of 4 nearest neighbors

Each iteration updates the entire grid.

Dense computational benchmark

Distributed by spatial partitioning of the grid.

Communication of partition outline areas required, each iteration.

Resiliency implemented via checkpointing.

Failure triggers a reassignment of work, and global replay from previous checkpoint.

Checkpoints stored in an in-memory resilient store, implemented in X10

Performance can be controlled by checkpoint frequency.

If no checkpoints, performance is the same as existing X10

© 2009 IBM Corporation

Conclusions

Resilient X10: A novel point in the design space

 Avoid sacrificing performance

 Re-use exception semantics

 HBI principle ensures that transitive synchronization is preserved after node failure

 Ensure no surprises for the programmer

Implemented and tested at scale

 Implemented „finish‟ 3 ways, microbenchmarked

 Implemented 3 apps that handle failure in different ways

– K-Means (decimation)

– Sparse Matrix * Dense Vector (reload & replay)

– Stencil (checkpointing)

 Apps are extended from non-resilient versions to handle DeadPlaceException

 Performance close to existing X10, but resilient to a few node failures

17

© 2009 IBM Corporation

Questions?

18

© 2009 IBM Corporation

Resilient Store

Resilient X10 Review

•Provide reliable memory so that data can continue to be accessed in the event of a failure

•Disk storage has too much overhead (e.g.Hadoop).

Our solution:

Use Failure-Reporting X10 constructs to replicate data across different places

Manifests as utility library to Failure-Reporting X10 programs

Upon place death, transparently recover data from a backup copy

Different replication methods provide with varying levels of consistency:

Asynchronous updates – weak consistency

Update whenever data changes

Batch updates:

 Whenever number of updates exceeds a threshold

 Whenever time since last update exceeds a threshold

Synchronous updates – strong consistency, guaranteed never to lose data

 Lock all replicas, perform update atomically across all replicas

Synchronous updates result in more consistency but higher overhead.

(These two options correspond to whether or not a „finish‟ is used in the implementation…)

© 2009 IBM Corporation

Resilient Store

Resilient X10 Review

Primary

Backup

Primary

Backup Backup

Primary

Upon failure, must

•Identify lost primary stores, search to find their backups, recover the data

•Invoke application-specific code to distribute this data over remaining stores

•Identify lost backups, recreate from primary at a different place

Status:

 Current implementation sufficient for ResilientHeatTransfer

 We are now generalizing for other algorithms

Place 0 Place 1 Place 2

Application-specific

datastructure, e.g.

hashtable or array

© 2009 IBM Corporation

Fan-out and task management

 Many applications seem to have a common pattern:

 Start at place zero:

 for (iterations) {

– Divide work, create an activity at each place, maybe share some input data

– Each place does its work, and sends result back to place 0

– Back at place zero, if any place failed, repeat iteration with different work assignment

– Otherwise aggregate result and use as input for next iteration

 }

 The pattern is an iterative fan-out / reduction with a dynamic work-assignment that reassigns

work upon failure.

 We can build a framework to ease writing such frameworks, and ensure it is optimised to

e.g. use a tree-based fan out to distribute the communication cost

 Application simply provides the task-breakdown and the reduction operation.

 Kmeans and MatVecMult are a perfect fit for such a framework.

 ResilientHeatTransfer can also benefit from it.

 Current status: most efficient implementation is in MatVecMult, need to factor it out

21

© 2009 IBM Corporation 22 IBM Confidential

Failure Reporting X10 – Higher level programming

 ResilientDistArray: A DistArray that can, on place death:

– Recover the lost data (explicit checkpointing)

– Redistribute all the data using a new PlaceGroup

– (one without dead places in it)

 We hope to be able to deploy this in our example code.

 1 val livePlaces = new ArrayList[Place]();

 2 for (pl in Place.places()) livePlaces.add(pl);

 3 var pg:PlaceGroup = new SparsePlaceGroup(livePlaces.toRail());

 4 val A = new ResilientDistArray_BlockBlock_2[Double](n, n, pg, ...);

 5 A.snapshot(); // create a snapshot

 6

 7 for (i in 1..1000) {

 8 try {

 9 finish for (pl in A.placeGroup()) at (pl) async {

10 for (p in A.localIndices()) A(p) = ... // do distributed calculation

11 }

12 if (i % 10 == 0) A.snapshot(); // snapshot every 10th iteration

13 } catch (e:DeadPlaceException) {

14 livePlaces.remove(e.place); // remove the dead place and

15 pg = new SparsePlaceGroup(livePlaces.toRail());

16 A.restore(pg); // restore from the latest snapshot

17 }

18 } /* for (i) */

 DistArray: X10 library supporting implicitly distributed (global) arrays

– Specify a PlaceGroup on creation

– Implicitly handles the blocking of the array across the places in the group

– Allows programs to be more concise, if used

© 2009 IBM Corporation

Failure-reporting X10 (Finish implementation)

Each finish { … } has a resilient runtime state object, containing a set of counters

 live[p] – number of activities executing (or queued) at p

 transit[a,b] – number of activities sent by place a, not yet received by place b (sparse)

Quiescence of finish defined to be when counters are zero, ignoring dead places

Non-zero counters at dead places become DeadPlaceExceptions

User-level exceptions must be handled too

Adoption of activities under dead finishes must be handled

No other real language has a termination algorithm this general…

23

// starting from A

at (B) async {

 ...

}

becomes

A B

fork(A,B)

begin(A,B)

join(B)

…

transit[A][B]

left high

live[B] left

high

Operations:

fork(a, b) transit[a][b]++

begin(a, b) transit[a][b]–- ; live[b]++

join(b) live[b]--

Current implementation (fully implemented):

Place 0 stores all counters, never fails

All fork/begin/join notifications go to place 0 (a bottleneck)

Scales OK on hundreds of nodes

Impractical for thousands of nodes (where resiliency really matters)

© 2009 IBM Corporation

Failure-reporting X10 (XRX implementation)

Investigation of ZooKeeper as an external finish database.

 Initial implementation done for Managed X10 (X10 on Java)

– Each counter element is mapped to a znode

– Exceptions are stored similarly

– ZooKeeper “Watcher” mechanism notifies waiting activity to

test quiescence only when counters are modified (avoids

polling)

 In current version, performance is not good

– About 50 times slower than the “Place0” version

– Many ZK calls are necessary to implement fork/begin/join

– Each ZK call is not lightweight (each op takes 0.1~1.0 ms)

Redesigning the znode mapping to reduce the number of ZK ops

Current mapping

Each element of FinishState arrays is expressed as a znode,

which contains a value.
Therefore, lock;getData;setData;unlock sequence is

necessary to update the value in each node

Modify the mapping to utilize “sequential creation” mode:

Express the array value by the number of nodes

Reduce number of ZK ops needed per finish op

No need for lock operations

FinishState-001

lock transit live

0to1

val=0

0to2

val=1

0

val=1

1

val=2

exceptions

znode

val p = here.next();

for (i in 1..100) {

 finish {

 for (j in 1..100) {

 at (p) async {};

 }

 }

}

FinishState-001

transit0to2-001

live0-003

live1-002

live1-004

exceptions

Current

New

© 2009 IBM Corporation

Complete example – Monte Pi

Resilient X10 Review

public class MontePi {

 static val ITERS = 1000000000 / Place.MAX_PLACES;

 public static def main (args : Rail[String]) {

 val result = GlobalRef(new Cell[Long](0)); // points_in_circle

 finish for (p in Place.places()) async {

 at (p) {

 val rand = new Random(System.nanoTime());

 var total : Long = 0;

 for (iter in 1..ITERS) {

 val x = rand.nextDouble();

 val y = rand.nextDouble();

 if (x*x + y*y <= 1.0) total++;

 }

 val total_ = total;

 Console.OUT.println("Work done at: "+here);

 at (result.home) atomic {

 result()(result()()+total_));

 }

 }

 }

 val pi = (4.0 * result()()) / (ITERS*Place.MAX_PLACES);

 Console.OUT.println("pi = "+pi);

 }

}

© 2009 IBM Corporation

Complete example – Resilient Monte Pi

Resilient X10 Review

public class ResilientMontePi {

 static val ITERS = 1000000000l / Place.MAX_PLACES;

 public static def main (args : Rail[String]) {

 val result = GlobalRef(new Cell(Pair[Long,Long](0, 0))); // (points_in_circle, points_tested)

 finish for (p in Place.places()) async {

 try {

 at (p) {

 val rand = new Random(System.nanoTime());

 var total : Long = 0;

 for (iter in 1..ITERS) {

 val x = rand.nextDouble();

 val y = rand.nextDouble();

 if (x*x + y*y <= 1.0) total++;

 }

 val total_ = total;

 Console.OUT.println("Work done at: "+here);

 at (result.home) atomic {

 result()(Pair(result()().first+total_, result()().second+ITERS));

 }

 }

 } catch (e:DeadPlaceException) {

 Console.OUT.println("Got DeadPlaceException from "+e.place);

 }

 }

 val pi = (4.0 * result()().first) / result()().second;

 Console.OUT.println("pi = "+pi+" calculated with "+result()().second+" samples.");

 }

}

© 2009 IBM Corporation

1

M3R (Main Memory Map Reduce): A Reimplementation of Hadoop

Current State

• Drop in replacement for Hadoop 1.0

• Runs Hadoop, Pig, Jaql, BigSheets

• Main memory performance

• Transparent caching

Future Plans

•Integrate support for fast “intrinsic” jobs

•Analysis based optimizations

•Fall back to disk for large jobs

•Failure resiliency

Case study: M3R (Main Memory Map Reduce)

27

Hadoop
• Resilient implementation of map reduce
• Ground-up implementation
• Considerable amount of code
• Performance / expressiveness limitations
• No code sharing with other frameworks

Will be able to implement a range of resilient distributed programming models using X10

M3R (today)
• Non-resilient MR on top of X10
• Much smaller implementation
• Hadoop compatibility layer
• Much faster

M3R (tomorrow)
• Resilient MR on top of Resilient X10
• Still a small implementation
• Still fast
• X10 does a lot of the work

© 2009 IBM Corporation

Game Plan (2013 - 2014)

1. Failure-reporting X10

– X10 is internally resilient

– Applications must handle failures (communicated via exceptions)

2. Resilient frameworks

– Applications expressed by creating closures and passing to libraries

– Libraries re-execute code if necessary

– Libraries handle locality

3. Language support for resilience

– Detect that code is suitable for execution in a resilient framework

– Place-independent (can be moved)

– Idempotent (can run it again)

4. Elastic X10

– Execution can expand after program starts

– Unclear that this brings much benefit except for very long executions

– Will consider possible value of this at a later date…

28

