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Resiliency Spectrum 
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MPI 

Existing X10 

(fast) 

Hadoop 

Checkpoint & Restart 

X10-FT 

(slow) 

Resilient X10 (fast) 

Non-resilient / manual Transparent fault tolerance 

Node failure is a reality on commodity clusters 

• Hardware failure 

• Memory errors, leaks, race conditions (including in the kernel) 

• Evictions 

• Evidence: Popularity of Hadoop 

Ignoring failures causes serial 

MTBF aggregation: 

24 hour run, 1000 nodes, 

6 month node MTBF 

=> under 1% success rate 

Transparent checkpointing 

causes significant overhead. 

Failure awareness 
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Resilient X10 Overview 
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Provide helpful semantics: 

• Failure reporting 

• Continuing execution on unaffected nodes 

• Preservation of synchronization: HBI principle (described later) 

 

Application-level failure recovery, use domain knowledge 

• If the computation is approximate: trade accuracy for reliability (e.g. Rinard, ICS06) 

• If the computation is repeatable: replay it 

• If lost data is unmodified: reload it 

• If data is mutated: checkpoint it 

• Libraries can hide, abstract, or expose faults (e.g. containment domains) 

• Can capture common patterns (e.g. map reduce) via application frameworks 

 

No changes to the language, substantial changes to the runtime implementation 

• Use exceptions to report failure 

• Existing exception semantics give strong synchronization guarantees 
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X10 Language Overview (Non-distributed features) 

 Java-like language 

 Developed ~ 10 years (open source) 

 Structs (compound value types) 

 Reified Generics 

 

 Activities 

– Lightweight threads 

– Exception propagation 

– Atomic construct 

Resilient X10 Review 

struct Complex {  

    val real : Double;  

    val imag : Double;  

}  

class Test {  

    public static def myMethod(p:Complex) : Complex {  

        return Complex(p.real+1, p.imag-1);  

    }  

    public static def myMethod2(p:Rail[Complex]) {  

        for (i in 0..(p.size-1)) {  

            p(i) = myMethod(p(i));  

        }  

    }  

} 

class Test {  

    public static def main(args: Rail[String]) {  

        finish {  

            async {  

                Console.OUT.println("1a");  

            }  

            async {  

                Console.OUT.println("1b");  

            }  

        }  

        Console.OUT.println("2");  

    }  

} 

Possible interleavings: 

 1a 

 1b 

 2 

Or: 

 1b 

 1a 

 2 
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X10 Language Overview (Distributed Features) 

 Scales to 1000s of nodes 

 Asynchronous PGAS (APGAS) 

– Heap partitioned into „places‟ 

– Can only dereference locally 

 Explicit communication 

 Implicit object graph serialization 

Resilient X10 Review 

Heap object „Place‟ „Activity‟ „GlobalRef‟ 

class MyClass {   

    public static def main(args:Rail[String]):void {   

        val c = GlobalRef(new Cell[Long](0));   

        finish {   

            for (p in Place.places()) {   

                at (p) {   

                    async {   

                        val v = ...; // non-trivial work   

                        at (Place.FIRST_PLACE) {   

                            val cell = c();   

                            atomic { cell(cell() + v); }   

        }   }   }   }   }      

        // Runs after remote activities terminate   

        Console.OUT.println(“Cumulative value: "+c()());   

    }   

} 

 

0 1 2 3 

Cell[Int] object 

Main activity at (p) { … } 

at (Place.FIRST_PLACE) 

val x = ...;  

val y = ...;  

at (p) {  

    val tmp = x + y;  

} 
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Resilient X10 (Language design) 

Immediate Consequences: 

 The heap at that place is lost 

 The activities are lost 

 Any „at‟ in progress immediately terminates with x10.lang.DeadPlaceException 

     (Very similar to java.lang.VirtualMachineError) 
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0 1 2 

Sometimes, an arbitrary place may disappear. 

Lasting Consequences: 

Place will never come back alive. 

Can no-longer at (dead_place) {…} – get DeadPlaceException thrown. 

GlobalRef[T] to objects at that place may still be dangling… 

But type system requires use of „at‟ to access that state. 

Code can test if a given Place value is dead, get list of alive places, etc. 
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Resilient X10 Simple Example 

class MyClass {  

    public static def main(args:Rail[String]):void {  

        val c = GlobalRef[Cell[Int]](new Cell[Int](0));  

        finish {  

            for (p in Place.places()) {  

                async {  

                    try {  

                        at (p) {  

                            val v = ...; // non-trivial work  

                            at (Place.FIRST_PLACE) {  

                                val cell = c();  

                                atomic { cell(cell() + v); }  // cell() += v  

                            } 

                        } 

                    } catch (e:DeadPlaceException) {  

                        Console.OUT.println(e.place+” died.”);  

                    }  

        }   }   } 

        // Runs after remote activities terminate  

        Console.OUT.println(“Cumulative value: "+c()());  

    }  

}  
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Revision of earlier example for failure-reporting X10: 
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Special treatment of place 0 

 Activities are rooted at the ‘main’ activity at place zero. 

 If place zero dies, everything dies. 

 The programmer can assume place 0 is immortal. 

 MTBF of n-node system = MTBF of 1-node system 

 Having an immortal place 0 is good for programmer productivity 

– Can orchestrate at place 0 (e.g. deal work) 

– Can do (trivial) reductions at place 0 

– Divide & conquer expressed naturally 

– Can do final result processing / user interface 

 However… 

– Must ensure use of place 0 does not become a bottleneck, at scale 

 

 Future work: 

– Transparent fault tolerance for place 0 only (checkpoint the heap). 
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A 

A A 

A A 
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Happens Before Invariance (HBI) Principle 

Failure of a place should not alter 

the happens before relationship. 
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finish 

activity 

finish 

activity 

Place 0 Place 1 

val gr = GlobalRef(new Cell[Int](0));  

try {  

    finish at (Place(1)) async {  

        finish at (Place(0)) async {  

            gr()(10); // A 

        }  

    } 

} catch (e:MultipleExceptions) { }  

gr()(3); // B 

assert gr()() != 10;  

 

A happens before B, even if place 1 dies. 

Without this property, avoiding race conditions would be very hard. 

But guaranteeing it is non-trivial, requires more runtime machinery. 

Waits-for 

graph 

Implied 

synchro-

nization 

orphan 
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HBI – Subtleties 

Relationship between at / finish and orphans 

Orphaned activities are adopted by the next enclosing synchronization point. 

  

at (Place(1)) { finish async S } Q   // S happens before Q 

finish { at (Place(1)) { async finish async S } Q  }  // S concurrent with Q 

 

Exceptions 

Adoption does not propagate exceptions: 

at (Place(1)) { 

    try { 

        finish at (Place(0)) async { throw e; } 

    } catch (e:Exception) { } 

} 

// e should never appear here 

10 
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Implementation: X10 Architectural Overview 

 async { … } 

 finish { … } 

 at (p) { … } 
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X10 application 

 at (p) async { … } 

 here 

 launching processes 

 

 OS threads 

 Serialization 

 

Runtime stack: 

Key: 

Java 

X10 runtime 

C++ runtime 
Java runtime 

JNI wrapper 

X10RT (network layer) 

… MPI PAMI 
Sockets 

C++ 

X10 
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Implementing Resilient X10 (X10RT) 

Focus on sockets backend 

 We have complete control 

 Handle TCP timeouts / connection resets gracefully 

 Communicate failures up the stack 

 Assume no failure during start-up phase (this is short compared to a 24 hour execution) 

 

Changes to X10RT API: 

Simple c++ code to send an asynchronous message and wait for a reply (via X10RT API): 
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x10rt_send_msg(p, msgid, buf); 

while (!got_reply) { 

    x10rt_probe(); 

} 

int num_dead = x10rt_ndead(); 

x10rt_send_msg(p, msgid, buf); 

while (!got_reply) { 

    int now_dead = x10rt_ndead(); 

    if (now_dead != num_dead) { 

        num_dead = now_dead; 

        // account for failure 

        break; 

    } 

    x10rt_probe(); 

} 

becomes 
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Implementing Resilient X10 (Finish) 

The implementation reduces ‘at’ to a special case of ‘finish’. 

Abstractly, finish is a state machine, see paper for details. 

The finish state itself must be resilient, to allow adoption of orphaned activities.  

We tried 3 approaches for implementing resilient finish, tested up to 416 places: 

 Store all finish state at place zero. 

– Simple, makes use of „immortal‟ place zero. 

– For finishes logically at place zero in the code, this is optimal anyway. 

– For finishes logically at other places, more communication required. 

– Bottle neck at place zero. 

 Store all finish state in ZooKeeper 

– Too much overhead. 

 Distributed resilient finish. 

– Finish state is replicated at one other node. 

– Execution aborted if both nodes die. 

– After optimization for immortal place zero, best all round performance 

– No bottle neck at place zero 

See paper for performance results 
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Application – K-Means (Lloyd‟s algorithm) 

Resilient X10 Review 

Machine learning / analytics kernel. 

Given N (a large number) of points in 4d space (dimensionality arbitrary) 

Find the k clusters in 4d space that approximate points‟ distribution 

^ N=11, k=2 

•Each cluster‟s position is iteratively refined by averaging the position of the set of points for 

whom that cluster is the closest. 

•Very dense computational kernel (assuming large N). 

•Embarrassingly parallel, easy to distribute. 

•Points data can be larger than single node RAM. 

•Points can be split across nodes, partial averages computed at each node and aggregated 

at place 0. 

•Refined clusters then broadcast to all places for next iteration. 

 

Resiliency is achieved via decimation 

•The algorithm will still converge to an approximate result if only most of the points are used. 

•If a place dies, we simply proceed without its data and resources. 

•Error bounds on this technique explored in Rinard06 

 

Performance is within 90% of non-resilient X10 
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Application – Iterative Sparse Matrix * Dense Vector 

Resilient X10 Review 

Kernel found in a number of algorithms, e.g. GNMF, Page Rank, … 

An N*N sparse (0.1%) matrix, G, multiplied by a 1xN dense vector V 

Resulting vector used as V in the next iteration. 

Matrix block size is 1000x1000, matrix is double precision 

 

G distributed into row blocks.  Every place starts with entire V, computes fragment of V‟. 

Every place communicates fragments of V to place 0 to be aggregated. 

New V broadcast from place 0 for next iteration (G is never modified). 

 

Code is memory-bound, amount of actual computation quite low 

Problem is the size of the data – does not fit in node. 

G is loaded at application start, kept in RAM between iterations. 

 

Resiliency is achieved by replaying lost work: 

•Place death triggers other places to take over lost work assignment. 

•Places load the extra G blocks they need from disk upon failure 

 

100x faster than Hadoop 

Resilient X10 ~ same speed as existing X10 

G V V‟ = 
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Application – Heat Transfer  

Resilient X10 Review 

Demonstration of a 2D stencil algorithm with simple kernel 

An N*N grid of doubles 

Stencil function is a simple average of 4 nearest neighbors 

 

Each iteration updates the entire grid. 

Dense computational benchmark 

Distributed by spatial partitioning of the grid. 

Communication of partition outline areas required, each iteration. 

 

Resiliency implemented via checkpointing. 

Failure triggers a reassignment of work, and global replay from previous checkpoint. 

Checkpoints stored in an in-memory resilient store, implemented in X10 

 

Performance can be controlled by checkpoint frequency. 

If no checkpoints, performance is the same as existing X10 
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Conclusions 

Resilient X10: A novel point in the design space 

 Avoid sacrificing performance 

 Re-use exception semantics 

 HBI principle ensures that transitive synchronization is preserved after node failure 

 Ensure no surprises for the programmer 

Implemented and tested at scale 

 Implemented „finish‟ 3 ways, microbenchmarked 

 Implemented 3 apps that handle failure in different ways 

– K-Means (decimation) 

– Sparse Matrix * Dense Vector (reload & replay) 

– Stencil (checkpointing) 

 Apps are extended from non-resilient versions to handle DeadPlaceException 

 Performance close to existing X10, but resilient to a few node failures 
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Questions? 
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Resilient Store  

Resilient X10 Review 

•Provide reliable memory so that data can continue to be accessed in the event of a failure 

•Disk storage has too much overhead (e.g.Hadoop). 

 

Our solution: 

Use Failure-Reporting X10 constructs to replicate data across different places 

Manifests as utility library to Failure-Reporting X10 programs 

Upon place death, transparently recover data from a backup copy 

 

Different replication methods provide with varying levels of consistency: 

 

Asynchronous updates – weak consistency 

Update whenever data changes 

Batch updates: 

 Whenever number of updates exceeds a threshold 

 Whenever time since last update exceeds a threshold 

 

Synchronous updates – strong consistency, guaranteed never to lose data 

 Lock all replicas, perform update atomically across all replicas 

 

Synchronous updates result in more consistency but higher overhead. 

(These two options correspond to whether or not a „finish‟ is used in the implementation…) 
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Resilient Store  

Resilient X10 Review 

Primary 

Backup 

Primary 

Backup Backup 

Primary 

Upon failure, must 

•Identify lost primary stores, search to find their backups, recover the data 

•Invoke application-specific code to distribute this data over remaining stores 

•Identify lost backups, recreate from primary at a different place 

 

Status: 

 Current implementation sufficient for ResilientHeatTransfer 

 We are now generalizing for other algorithms 

Place 0 Place 1 Place 2 

Application-specific 

datastructure, e.g. 

hashtable or array 
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Fan-out and task management 

 Many applications seem to have a common pattern: 

 Start at place zero: 

 for (iterations) { 

– Divide work, create an activity at each place, maybe share some input data 

– Each place does its work, and sends result back to place 0 

– Back at place zero, if any place failed, repeat iteration with different work assignment 

– Otherwise aggregate result and use as input for next iteration 

 } 

 The pattern is an iterative fan-out / reduction with a dynamic work-assignment that reassigns 

work upon failure. 

 We can build a framework to ease writing such frameworks, and ensure it is optimised to 

e.g. use a tree-based fan out to distribute the communication cost 

 Application simply provides the task-breakdown and the reduction operation. 

 Kmeans and MatVecMult are a perfect fit for such a framework. 

 ResilientHeatTransfer can also benefit from it. 

 Current status: most efficient implementation is in MatVecMult, need to factor it out 

21 
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Failure Reporting X10 – Higher level programming 

 ResilientDistArray: A DistArray that can, on place death: 

– Recover the lost data (explicit checkpointing) 

– Redistribute all the data using a new PlaceGroup 

– (one without dead places in it) 

 

 We hope to be able to deploy this in our example code. 

 

  1 val livePlaces = new ArrayList[Place](); 

  2 for (pl in Place.places()) livePlaces.add(pl); 

  3 var pg:PlaceGroup = new SparsePlaceGroup(livePlaces.toRail()); 

  4 val A = new ResilientDistArray_BlockBlock_2[Double](n, n, pg, ...); 

  5 A.snapshot(); // create a snapshot 

  6  

  7 for (i in 1..1000) { 

  8     try { 

  9         finish for (pl in A.placeGroup()) at (pl) async { 

10             for (p in A.localIndices()) A(p) = ... // do distributed calculation 

11         } 

12         if (i % 10 == 0) A.snapshot(); // snapshot every 10th iteration 

13     } catch (e:DeadPlaceException) { 

14         livePlaces.remove(e.place); // remove the dead place and 

15         pg = new SparsePlaceGroup(livePlaces.toRail()); 

16         A.restore(pg); // restore from the latest snapshot 

17     } 

18 } /* for (i) */ 

 DistArray: X10 library supporting implicitly distributed (global) arrays 

– Specify a PlaceGroup on creation 

– Implicitly handles the blocking of the array across the places in the group 

– Allows programs to be more concise, if used 
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Failure-reporting X10 (Finish implementation) 

Each finish { … } has a resilient runtime state object, containing a set of counters 

 live[p] – number of activities executing (or queued) at p 

 transit[a,b] – number of activities sent by place a, not yet received by place b (sparse) 

Quiescence of finish defined to be when counters are zero, ignoring dead places 

Non-zero counters at dead places become DeadPlaceExceptions 

User-level exceptions must be handled too 

Adoption of activities under dead finishes must be handled 

No other real language has a termination algorithm this general… 
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// starting from A 

at (B) async { 

 

    ... 

 

} 

becomes 

A B 

fork(A,B) 

begin(A,B) 

join(B) 

… 

transit[A][B] 

left high 

live[B] left 

high 

Operations:  

fork(a, b) transit[a][b]++ 

begin(a, b) transit[a][b]–- ; live[b]++ 

join(b)  live[b]-- 

    

Current implementation (fully implemented): 

Place 0 stores all counters, never fails 

All fork/begin/join notifications go to place 0 (a bottleneck) 

Scales OK on hundreds of nodes 

Impractical for thousands of nodes (where resiliency really matters) 
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Failure-reporting X10 (XRX implementation) 

Investigation of ZooKeeper as an external finish database. 

 Initial implementation done for Managed X10 (X10 on Java) 

– Each counter element is mapped to a znode 

– Exceptions are stored similarly 

– ZooKeeper “Watcher” mechanism notifies waiting activity to 

test quiescence only when counters are modified (avoids 

polling) 

 In current version, performance is not good 

– About 50 times slower than the “Place0” version 

– Many ZK calls are necessary to implement fork/begin/join 

– Each ZK call is not lightweight (each op takes 0.1~1.0 ms) 

Redesigning the znode mapping to reduce the number of ZK ops 

 

Current mapping 

Each element of FinishState arrays is expressed as a znode, 

which contains a value. 
Therefore, lock;getData;setData;unlock sequence is 

necessary to update the value in each node 

 

Modify the mapping to utilize “sequential creation” mode: 

Express the array value by the number of nodes 

Reduce number of ZK ops needed per finish op 

No need for lock operations 

 

 

FinishState-001 

lock transit live 

0to1 

val=0 

0to2 

val=1 

0 

val=1 

1 

val=2 

exceptions 

znode 

val p = here.next(); 

for (i in 1..100) { 

    finish { 

        for (j in 1..100) { 

            at (p) async {}; 

        } 

    } 

} 

FinishState-001 

transit0to2-001 

live0-003 

live1-002 

live1-004 

exceptions 

Current 

New 
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Complete example – Monte Pi 

Resilient X10 Review 

public class MontePi {  

 

    static val ITERS = 1000000000 / Place.MAX_PLACES;  

      

    public static def main (args : Rail[String]) {  

      

        val result = GlobalRef(new Cell[Long](0)); // points_in_circle  

          

        finish for (p in Place.places()) async {  

            at (p) {  

                val rand = new Random(System.nanoTime());  

                var total : Long = 0;  

                for (iter in 1..ITERS) {  

                    val x = rand.nextDouble();  

                    val y = rand.nextDouble();  

                    if (x*x + y*y <= 1.0) total++;  

                }     

                val total_ = total;  

                Console.OUT.println("Work done at: "+here);  

                at (result.home) atomic {  

                    result()(result()()+total_));  

                }     

            }     

        }     

          

        val pi = (4.0 * result()()) / (ITERS*Place.MAX_PLACES);  

        Console.OUT.println("pi = "+pi);  

          

    }     

      

}    
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Complete example – Resilient Monte Pi 

Resilient X10 Review 

public class ResilientMontePi {  

 

    static val ITERS = 1000000000l / Place.MAX_PLACES;  

      

    public static def main (args : Rail[String]) {  

      

        val result = GlobalRef(new Cell(Pair[Long,Long](0, 0))); // (points_in_circle, points_tested)  

          

        finish for (p in Place.places()) async {  

            try {  

                at (p) {  

                    val rand = new Random(System.nanoTime());  

                    var total : Long = 0;  

                    for (iter in 1..ITERS) {  

                        val x = rand.nextDouble();  

                        val y = rand.nextDouble();  

                        if (x*x + y*y <= 1.0) total++;  

                    }     

                    val total_ = total;  

                    Console.OUT.println("Work done at: "+here);  

                    at (result.home) atomic {  

                        result()(Pair(result()().first+total_, result()().second+ITERS));  

                    }     

                }     

            } catch (e:DeadPlaceException) {  

                Console.OUT.println("Got DeadPlaceException from "+e.place);  

            }     

        }     

          

        val pi = (4.0 * result()().first) / result()().second;  

        Console.OUT.println("pi = "+pi+"   calculated with "+result()().second+" samples.");  

          

    }     

      

}    
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1

M3R (Main Memory Map Reduce): A Reimplementation of Hadoop

Current State

• Drop in replacement for Hadoop 1.0

• Runs Hadoop, Pig, Jaql, BigSheets

• Main memory performance

• Transparent caching

Future Plans

•Integrate support for fast “intrinsic” jobs

•Analysis based optimizations

•Fall back to disk for large jobs

•Failure resiliency

Case study: M3R (Main Memory Map Reduce) 
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Hadoop 
• Resilient implementation of map reduce 
• Ground-up implementation 
• Considerable amount of code 
• Performance / expressiveness limitations 
• No code sharing with other frameworks 

 
 

Will be able to implement a range of resilient distributed programming models using X10 

M3R (today) 
• Non-resilient MR on top of X10 
• Much smaller implementation 
• Hadoop compatibility layer 
• Much faster 

M3R (tomorrow) 
• Resilient MR on top of Resilient X10 
• Still a small implementation 
• Still fast 
• X10 does a lot of the work 
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Game Plan (2013 - 2014) 

1. Failure-reporting X10 

– X10 is internally resilient 

– Applications must handle failures (communicated via exceptions) 

 

2. Resilient frameworks 

– Applications expressed by creating closures and passing to libraries 

– Libraries re-execute code if necessary 

– Libraries handle locality 

 

3. Language support for resilience 

– Detect that code is suitable for execution in a resilient framework 

– Place-independent (can be moved) 

– Idempotent (can run it again) 

 

4. Elastic X10 

– Execution can expand after program starts 

– Unclear that this brings much benefit except for very long executions 

– Will consider possible value of this at a later date… 
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