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Abstract

X10 is a high-performance, high-productivity program-

ming language aimed at large-scale distributed and shared-

memory parallel applications. It is based on the Asyn-

chronous Partitioned Global Address Space (APGAS) pro-

gramming model, supporting the same fine-grained concur-

rency mechanisms within and across shared-memory nodes.

We demonstrate that X10 delivers solid performance at

petascale by running (weak scaling) eight application ker-

nels on an IBM Power 775 supercomputer utilizing up to

55,680 Power7 cores (for 1.7 Pflop/s of theoretical peak per-

formance). We detail our advances in distributed termina-

tion detection, distributed load balancing, and use of high-

performance interconnects that enable X10 to scale out to

tens of thousands of cores.

For the four HPC Class 2 Challenge benchmarks, X10

achieves 41% to 87% of the system’s potential at scale (as

measured by IBM’s HPCC Class 1 optimized runs). We

also implement K-Means, Smith-Waterman, Betweenness

Centrality, and Unbalanced Tree Search (UTS) for geometric

trees. Our UTS implementation is the first to scale to petaflop

systems.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming—distributed pro-

gramming; D.3.3 [Programming Languages]: Language

Constructs and Features—concurrent programming struc-

tures, control structures

Keywords X10; APGAS; scalability; performance

∗ Work done while employed at IBM T. J. Watson Research Center.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2555243.2555245

1. Overview

X10 is a high-performance, high-productivity programming

language developed at IBM.1 It is a class-based, strongly-

typed, garbage-collected, object-oriented language [32, 33].

To support concurrency and distribution, X10 uses the Asyn-

chronous Partitioned Global Address Space programming

model (APGAS [31]). This model introduces two key con-

cepts – places and asynchronous tasks – and a few mech-

anisms for coordination. With these, APGAS can express

both regular and irregular parallelism, message-passing-

style and active-message-style computations, fork-join and

bulk-synchronous parallelism. In contrast to hybrid models

like MPI+OpenMP, the same constructs underpin both intra-

and inter-place concurrency.

Both its modern, type-safe sequential core and simple

programming model for concurrency and distribution con-

tribute to making X10 a high-productivity language in the

HPC and Big Data spaces. User productivity is further en-

hanced by providing tools such as an Eclipse-based IDE

(X10DT) and a source-level debugger.

In this paper, we focus on enabling X10 applications to

run at very large scale. We demonstrate that X10 and AP-

GAS deliver performance at petascale for regular and irreg-

ular kernels. We present experimental results for eight ker-

nels.2 We implement the four HPC Class 2 Challenge bench-

marks: HPL, FFT, RandomAccess, and Stream Triad [17],

as well as Smith-Waterman [37], Betweenness Central-

ity (BC) [5], K-Means [22], and Unbalanced Tree Search

(UTS) [25]. These programs are compiled using X10’s na-

tive backend,3 and run on a large IBM Power 775 system

with a theoretical peak performance of 1.7 Pflop/s.

1 X10 was developed as part of the IBM “Productive, Easy-to-use, Reliable

Computing System” project (PERCS [41]), supported by the DARPA High

Productivity Computer Systems initiative (HPCS [11]).
2 The X10 tool chain and the benchmark codes are publicly available at

http://x10-lang.org.
3 X10 is implemented with two backends. On the managed backend, X10

compiles into Java and runs on (a cluster of) JVMs. On the native backend,

X10 compiles into C++ and generates a native binary for execution on scale-

out systems.
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For the four HPC Challenge benchmarks, X10 today

achieves 41% to 87% of the system’s potential at scale as

reported by IBM’s optimized runs entry to the HPC Class 1

Challenge in November 2012 [16]. Our K-Means and Smith-

Waterman implementations scale linearly with the number

of compute nodes (weak scaling). Our UTS implementation

for geometric trees also scales linearly. To the best of our

knowledge, it is the first implementation of UTS to scale to

petaflop systems. Our BC implementation, which is being

actively developed, is able to process 245 Billion edges per

second using 47,040 cores.

All applications are written to run with minimal intra-

place concurrency. We have separately done work on sched-

ulers for intra-place concurrency [13, 40], but the results re-

ported here do not reflect the integration of these schedulers

with the scale-out stack. We leave this for future work.

All applications, except UTS, are implemented using a

classic SPMD approach. For these applications, data is stat-

ically partitioned and computations are statically scheduled.

For UTS, dynamic distributed load balancing is indispens-

able. We had to significantly revise and extend the lifeline-

based load balancing algorithm from Saraswat et al. [35] to

make it scale to tens of thousands of Power7 cores. While

we recently added dynamic load balancing to our BC imple-

mentation, the results we report here predate this change.

Contributions. The contributions of this paper are:

• We demonstrate that the APGAS programming model

delivers performance at petascale for both regular and

irregular kernels.

• We show experimental results for eight kernel bench-

marks implemented in X10 and running on a petaflop

Power 775 system. We provide detailed performance

analyses and, for the four HPC Challenge benchmarks,

we compare X10 performance to the best implementa-

tions available.

• We describe our solutions to the distributed termina-

tion detection problem at scale – the implementation of

X10’s finish construct – and the effective use of high-

performance interconnects in X10.

• We present a novel distributed load balancing algorithm

for UTS derived from [35]. To the best of our knowledge,

our implementation is the first that can effectively load

balance UTS on geometric trees at petascale.

Outline. The next two sections review the core concepts of

the X10 programming language (Section 2) and describe the

key innovations necessary to allow them to perform at scale

(Section 3). After describing the hardware and software con-

figuration in Section 4, we discuss the implementation and

performance results for each kernel in turn: we review the

HPC Challenge benchmarks in Section 5, UTS in Section 6,

and the remaining codes in Section 7. We discuss related

work in Section 8 and conclude in Section 9.

2. The X10 Language

Like Java, X10 is a strongly-typed, garbage-collected, class-

based, object-oriented programming language with single-

class multiple-interface inheritance. To support concurrency

and distribution, X10 introduces a few key concepts. We

briefly review the core Asynchronous Partitioned Global

Address Space programming model (APGAS [31]) that is

at the heart of the X10 programming model.

2.1 APGAS Concepts

A place is a collection of data and worker threads oper-

ating on the data, typically realized as an operating sys-

tem process. A single X10 computation typically runs over

a large collection of places. The notion of places is rei-

fied in the language: if S is a statement, then at(p) S is

a statement that shifts to place p to execute S. Similarly,

at(p) e evaluates the expression e at place p. The expres-

sion here evaluates to the current place. The expression

GlobalRef(someObject) computes a global reference to

someObject that can be passed freely from place to place

but only dereferenced at the home place of the reference, that

is, the place of someObject.

Asynchrony is fundamental to the language: if S is a state-

ment then async S is a statement which runs S as a sep-

arate, concurrent activity. Dually, the finish S statement

executes S and waits for all activities transitively spawned

during the execution of S to terminate before continuing.

Additional concurrency control is provided by the state-

ment when(c) S which executes S in a single uninterrupted

step when the condition c is true. An optimized uncondi-

tional form of when, atomic S, is also provided.

Other X10 features such as asynchronous memory trans-

fers and dynamic barriers (clocks) can be viewed as particu-

lar patterns of use of these constructs.

An X10 program consists of at least one class definition

with a main method. The number n of places available to a

particular execution (0 to n−1) and the mapping from places

to nodes is specified by the user at launch time using MPI-

like controls. The execution starts with the execution of the

main method at Place(0). Other places are initially idle.

2.2 APGAS Idioms

The power of X10’s core APGAS constructs lies in that,

for the most part, they can be nested freely. Combinations

of these constructs provide for MPI-like message pass-

ing, SPMD computation, active-message-style computation,

bulk synchronous parallel computation, overlap between

computation and communication, fork-join recursive paral-

lel decomposition, etc. Formal semantics for these constructs

have been developed in [8, 20, 33].
Remote evaluation is simply:

val v = at(p) evalThere(arg1, arg2); // blocking

We can combine at and async to obtain active messages:

at(p) async runThere(arg1, arg2); // non-blocking
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We can combine finish and async to compute Fi-
bonacci numbers with recursive parallel decomposition:

def fib(n:Int):Int {

if (n < 2) return n;

val f1:Int; val f2:Int;

finish {

// f1 and f2 are computed in parallel

async f1 = fib(n-1);

f2 = fib(n-2);

}

return f1+f2;

}

In the next example, one activity is spawned in each
place to run some startup code. The finish construct works
across places to ensures the initialization completes in each
place before the main body runs:

class Foo {

public static def main(args:Rail[String]) {

finish for(p in Place.places()) {

at(p) async {

... // startup code

} }

... // main body

} }

Parallel, possibly distributed tasks can be synchronized
with clocks. In this example, the clock ensures that loop
iterations are synchronized across places:

clocked finish for (p in Place.places()) {

at(p) clocked async for (val i in 0..9) {

... // loop body

Clock.advanceAll(); // global barrier

} }

Below, we use a GlobalRef and atomic updates to com-
pute the average system load across all places:

val acc = new Cell[Double](0.0);

val ref = GlobalRef[Cell[Double]](acc);

finish for(p in Place.places()) at(p) async {

val load = MyUtils.systemLoad(); // at place p

at(ref.home) async atomic ref() += load;

}

val averageLoad = acc()/Place.MAX_PLACES;

X10’s compiler and runtime systems understand asyn-

chrony and places and support them. For instance, the type

checker tracks occurrences of GlobalRefs to ensure these

are dereferenced in the proper places. In the last example, it

verifies that ref is only accessed at place ref.home.

The compiler also analyzes the bodies of at statements

and expressions to identify inter-place data dependencies

and instructs the X10 runtime to serialize data accord-

ingly.4 In this example, the value of load is serialized

from place p to place ref.home as part of the execution

of at(ref.home).

4 Data reachable from the body of an at is implicitly copied from the source

to the destination place of the at. GlobalRefs can be used to obtain remote

references instead.

For bulk copies, such as array copies, X10’s standard li-
braries offer dedicated APIs such as the Array.asyncCopy
method, which minimize local memory transfers. An array
asyncCopy is treated exactly as if it were an async. Its ter-
mination is simply tracked by the enclosing finish, making it
easy to overlap communication and computation:

finish {

// srcArray is local, dstArray is remote

Array.asyncCopy(srcArray, 0, dstArray, 0, size);

computeLocally(); // while sending the data

}

A great deal more information on X10 can be found

online at http://x10-lang.org including the language

specification [32], programmer’s guide [34], and a collection

of tutorials and sample programs.

2.3 Productivity

X10’s productivity results from the combination of object-

orientedness, strong typing, memory safety, a simple pro-

gramming model for concurrency and distribution (AP-

GAS), and tooling (Eclipse-based IDE and debugger).

The same finish construct is employed to track the

termination of a large number of asynchronous tasks (local

or remote) as well as the delivery of a single message or

anything in-between. The same asynchronous tasks are used

for distributing computations or data or both simultaneously

across nodes. In this paper, we demonstrate that such an

economy of means does not preclude scalable performance

while providing a significant productivity boost. An in-depth

productivity analysis however is beyond the scope of this

paper. See Section 8 for references on this topic.

3. X10 at Scale

In this section, we discuss the key innovations and exten-

sions that are needed to successfully scale X10 and the AP-

GAS programming model to very large systems.

3.1 Scalable Finish

The X10 language places no restrictions on the ability of the

programmer to combine and nest at and async statements

within a finish. Implementing X10’s finish construct

therefore requires a distributed termination protocol that can

handle arbitrary patterns of distributed task creation and

termination.

Because networks can reorder control messages, fully

general distributed termination detection algorithms become

prohibitively expensive with scale. In particular, the default

finish implementation in X10 uses O(n2) space where n is

the number of places involved. It may also flood the network

interface of the place of the activity waiting on the finish

construct.

Collective communications such as barriers in large dis-

tributed systems are optimized in hardware and/or software.

We need to do the same for finish.
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Finish optimizations. We augment the X10 runtime to

dynamically optimize finish by optimistically assuming

that it is local (within a single place) and then dynamically

switching to a more expensive distributed algorithm the first

time an activity governed by the finish executes an at.

Furthermore, the runtime automatically coalesces and com-

presses the control messages used by the termination detec-

tion algorithm.

In addition to these general dynamic optimizations, the

runtime provides implementations of distributed finish

that are specialized to common patterns of distributed con-

currency for which there exist more efficient implementa-

tions. Currently we recognize five such patterns:

FINISH_ASYNC a finish governing a single activity, possibly
remote. E.g.,

finish at(p) async S;

finish { async S1; S2 } // with S2 sequential

FINISH_HERE a finish governing a round trip. E.g.,

h=here; finish at(p) async {S1; at(h) async S2;}

FINISH_LOCAL a finish governing local activities. For in-
stance, if S does not spawn remote activities,

finish for(i in 1..n) async S;

FINISH_SPMD a finish governing the execution of remote
activities that do not spawn subactivities outside of a
finish. E.g.,

finish for(p in places) at(p) async finish S;

FINISH_DENSE a finish governing activities with dense or
irregular communication graphs. E.g.,

finish for(p in places) at(p) async {

finish for(q in places) at(q) async S;

}

In this example, there is direct communication between

any two places in places.

Each one of our benchmark programs uses a subset of

these specialized distributed termination detection algo-

rithms. The optimized implementations start to make a dif-

ference with hundreds of X10 places and become critical

with thousands of places or more.

SPMD codes typically exploit three of these implemen-

tations: FINISH_SPMD for the “root” finish governing the

parallel execution of the “main” activity in each place,

FINISH_ASYNC for “puts” and FINISH_HERE for “gets”.

Codes exploiting intra-place concurrency can benefit from

FINISH_LOCAL (even if the default algorithm already does

a pretty good job in this case). Codes with lots of peer-

to-peer communications use FINISH_DENSE in place of

FINISH_HERE. This is the case for instance of the distributed

load balancer in the Unbalanced Tree Search code (see be-

low), as it permits an idle place to directly request work from

randomly selected places in a fully decentralized manner.

For the first four patterns, the termination detection al-

gorithms are actual specializations of the default algorithm.

For instance, for FINISH_SPMD, the runtime knows it needs

to wait for exactly n termination messages if n remote activ-

ities were spawned. In contrast to the default case, the order,

source place, or content of each message is irrelevant.

Dense, irregular communication graphs are always a

challenge. Network stacks of supercomputers tend to be op-

timized for traditional, regular workloads and are of course

very concerned with latency. For instance the Power 775

network stack favors communication graphs with low out-

degree. Detecting the termination of a large number of irreg-

ular activities across a large number of places is therefore

not something these stacks are designed to do well out of the

box. First, there is no regularity to exploit. Second, optimiz-

ing for latency is just wrong as the latency of the last control

message is the only one that matters. But the network stack

has no way of knowing this.

This is where the FINISH_DENSE implementation comes

to the rescue. It uses software routing techniques to shape

the traffic of control messages into something more natural,

more idiomatic to the network stack. For now, it simply

compensates for the fact that we run multiple X10 places per

compute node by routing all communications through one

master place in each node. A finish control message going

from place p to q is routed via places p− p%b then q − q%b

then q where b is the number of places per node (up to 32).

In the future, it will be interesting to see if such a latency-

trading traffic-shaping approach is beneficial to other ar-

chitectures as well, and whether more sophisticated routing

strategies can further improve performance.

Implementation selection. We have prototyped a fully au-

tomatic compiler analysis that is capable of detecting many

of the situations where these patterns are applicable. For

instance, it correctly classifies the various occurrences of

finish in our HPL code into instances of FINISH_SPMD,

FINISH_ASYNC, and FINISH_HERE.
Unfortunately, we have not been able to turn this proto-

type into a finished product yet. Therefore, in our current
system, opportunities to apply these specialized finish im-
plementations are still guided by programmer supplied an-
notations – pragmas – such as:

@Pragma(Pragma.FINISH_ASYNC) finish at(p) async S;

As future work, we intend to further “harden” this analy-

sis to the point where it can be robustly applied as part of the

X10 compiler’s standard optimization package. Ultimately,

we do not want the end-user to worry about finish imple-

mentation selection at all.

We also intend to make the specialization mechanism ex-

tensible and let expert users develop efficient implementa-

tions tailored to particular concurrency patterns and/or spe-

cific network topologies.
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3.2 Scalable Broadcast

Iterating sequentially over many places to send identical or

similar messages (as we naively do in the examples of Sec-

tion 2) can waste valuable time and flood the network. We

developed a PlaceGroup library for efficiently managing

large groups of places. In particular, we support efficient

broadcast over place groups using spawning trees in order to

parallelize and distribute the task creation overhead. It also

efficiently handles the detection of the broadcast completion

by means of nested FINISH_SPMD blocks.

3.3 High-Performance Interconnects

As expected from supercomputers, the Power 775 Torrent in-

terconnect supports additional communication mechanisms

beyond basic point-to-point “fifo” primitives.

To make it possible to adapt to a wide range of intercon-

nects, the X10 runtime has a layered structure. At the lower

level, the X10 Runtime Transport (X10RT) API provides a

common interface to transports such as IBM’s PAMI trans-

port, MPI, and TCP/IP sockets.

We add support for RDMAs and collectives to X10RT

(see below). An implementation of X10RT however is only

required to provide basic point-to-point primitives. We pro-

vide an emulation layer to handle the more advanced APIs

when not natively supported. We surface them in the X10’s

standard libraries as follows.

Collectives. X10 teams – the x10.util.Team class – of-

fer capabilities similar to HPC collectives, such as Barrier,

All-Reduce, Broadcast, All-To-All, etc. Some networks sup-

port these multi-way communication patterns in hardware

including some simple calculations on the data. When the

X10 runtime is configured for these systems, the X10 team

operations map directly to the hardware implementations

available, offering performance that cannot be matched by

point-to-point messages. When unavailable, our emulation

layer kicks in.

RDMAs. RDMA (Remote Direct Memory Access) hard-

ware, such as the Torrent or InfiniBand, enables the transfer

of segments of memory from one machine to another with-

out local copies and without the involvement of the CPU or

operating system. This technology significantly reduces the

latency of data transfers, and frees the CPU to do other work

while the transfer is taking place.

We modify the Array.asyncCopy implementation to

take advantage of RDMAs. We also surface the “GUPS”

RDMA feature of the Torrent, which enables atomic remote

memory updates (e.g., XOR a memory location with an ar-

gument data word).

Congruent Memory Allocator. To use RDMA or collec-

tives, the application needs to register the memory segments

eligible for transfer with the network hardware. Moreover,

the task initiating the communication must typically know

the effective address of each memory segment involved

(both source and destination). We implement a “congruent”

memory allocator to allocate arrays backed by registered

memory segments (outside of the control of the garbage

collector). When using the same allocation sequence in ev-

ery place, this allocator can be configured for symmetric

allocation in order return the same sequence of addresses

everywhere.

The Torrent, even more than the CPU, is very sensitive to

TLB misses. It is therefore important (essential for Rando-

mAccess) that these memory segments are backed by large

pages so as to minimize the number of TLB entries. Our

congruent memory allocator makes use of large pages if sup-

ported and enabled on the system.

Importantly for productivity, the allocation, garbage col-

lection, or use of regular data is not affected at all. Congru-

ent arrays do not behave differently from regular arrays after

their initial allocation except of course for supporting ex-

tra communication primitives. Ultimately, we only want the

end-user to designate arrays for congruent allocation. Ev-

erything else should then be handled automatically by the

runtime system.

3.4 Scalable Load Balancing

Because irregular workloads are becoming the norm rather

than the exception, there is a demand for dynamic distributed

load balancing techniques. By applying dynamic distributed

load balancing, a runtime system can effectively dynam-

ically distribute or redistribute computationally-intensive

tasks across CPU cores within and across shared-memory

nodes to maximize utilization.

Saraswat et al. have developed a global load balancing li-

brary in X10 (GLB) based on insights from the Unbalanced

Tree Search scheduler they described in [35]. GLB takes

care of distributed rebalancing by permitting idle places to

“steal” work from other places. The choice of the victim se-

quence is key to the scalability of distributed work stealing:

who to try steal from, when, how often, when to back off,

etc. GLB handles this.

In Section 6, we describe generic improvements to the

load balancer as well as UTS-specific optimizations that

make it possible to scale this highly-unbalanced workload

to petascale systems for the first time. We have recently

integrated the generic elements of this new scheduler to the

GLB library and implemented UTS and BC using GLB [43].

4. The Power 775 System

We gathered our performance results on a Power7-based

Power 775 supercomputer named Hurcules [29, 30].

The smallest building block of the machine is called an

octant or simply a host. An octant is composed of a quad-

chip module containing four eight-core 3.84 Ghz Power7

processors, one optical connect controller chip (codenamed

Torrent), and 128 GB of memory. The peak bi-directional

bandwidth between any two chips is 96 GB/s (direct link).
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A single octant has a peak performance of 982 Gflop/s,

a peak memory bandwidth of 512 GB/s, and a peak bi-

directional interconnect bandwidth of 192 GB/s. Each oc-

tant forms a single SMP node running an operating system

image. One physical drawer consists of eight octants. Four

drawers are connected together to form a supernode.

The full machine we used for our measurements contains

56 supernodes, with 1740 octants (55,680 cores) available

for computation. This gives the system a theoretical peak

of 1.7 Pflop/s. For some benchmarks, we only used 32,768

cores because our implementations require the number of

cores to be a power of two. For others (Section 7), we only

had access to 47,040 cores due to operational constraints.

Interconnect. The Power 775 system is organized into a

two-level direct-connect topology [2] with “L” links con-

necting every pair of octants within a supernode and “D”

links connecting every pair of supernodes in the system.

1. Every octant in a drawer is connected to every other

octant of this drawer using a “L” Local link (LL) with

a peak bandwidth of 24 GB/s in each direction.

2. Every octant in a supernode is connected to every other

octant in the other three drawers of this supernode using

a “L” Remote link (LR) with a peak bandwidth of 5 GB/s

in each direction.

3. Every supernode is connected to every other supernode

using “D” links – eight of them in the current configura-

tion for a combined peak bandwidth of 80 GB/s in each

direction.

As a result, any two octants are at most three hops away (L-

D-L). We configure the routing protocol for “direct striped”

routes with MP_RDMA_ROUTE_MODE=hw_direct_striped.

Intra-supernode messages only use a single L link (LL or

LR). Inter-supernode messages only use the direct D links

between the two supernodes (in addition to L links within

these supernodes if needed) but are permitted to spread

across all eight parallel D links.

In order to understand the bandwidth characteristics of a

system partition of a given size, one has to account for two

factors: the number and peak bandwidth of the various links

(LL, LR, and D) as well as the peak interconnect bandwidth

of each octant. Please refer to [38] for a thorough bandwidth

analysis. In short, as we scale from one octant to a drawer

to a supernode to the full system, we will observe three

performance modes:

• With one supernode or less, the cross-section bandwidth

is limited by the peak interconnect bandwidth of each

individual octant.

• With a few supernodes, the cross-section bandwidth is

limited by the aggregated D link bandwidth.

• With many supernodes, the cross-section bandwidth is

again limited by the per-octant interconnect bandwidth.

In particular, there is a sharp drop in All-To-All bandwidth

per octant when going from one supernode to two supern-

odes, followed by a slow recovery when further increasing

the number of supernodes, followed by a plateau.

Software Configuration. Each of the octants runs RedHat

Enterprise Linux 6.1 and uses the IBM Parallel Active Mes-

saging Interface (PAMI) for network communication.

We compiled the benchmark programs using native X10

version 2.2.3 with and compiled the resulting C++ files

with xlC version 11 with the -qinline -qhot -O3 -q64

-qarch=auto -qtune=auto compiler options. For the FFT

and HPL kernels we used native implementations of key nu-

merical routines from FFTE and IBM ESSL respectively.

Our UTS code calls a native C routine to compute SHA1

hashes.

We executed the programs in a mode in which each X10

place contained a single worker thread (X10_NTHREADS=1)

on which the X10 runtime scheduler dispatched the ac-

tivities for that place. Moreover each core in the system

supported exactly one X10 place. To minimize OS jitter,

each X10 place was bound to a specific core (by setting

X10RT_CPUMAP).

In the remainder of the paper, we use the terms place and

core interchangeably to measure scale. A node or octant or

host has 32 cores and runs 32 places.

While we always rely on PAMI to communicate among

places even if they belong to the same octant, PAMI itself

leverages shared memory to optimize intra-node communi-

cations.

We report results with all optimizations turned on for

all benchmarks. Unfortunately, we did not have sufficient

time allocated on this supercomputer to assess the benefits

of our techniques on a per-optimization or per-benchmark

basis. For some of these optimizations however (including

FINISH_DENSE in UTS, scalable broadcast in the HPCC

benchmarks, RDMA-based All-To-All collective in FFT),

we observed that the runs at scale do not terminate (in any

reasonable amount of time) without the optimization.

5. HPC Challenge Benchmarks

The HPC Challenge benchmark collection was designed not

only to better characterize the capabilities of supercomput-

ers than a single measurement can (Class 1 competition), but

also to provide an opportunity to compare programming lan-

guages and models for concurrency and distribution (Class

2 competition) [17]. In the Class 2 competition, entries are

judged for both performance and elegance.

In 2012, IBM entered both the Class 1 and Class 2 com-

petition for this Power 775 system. IBM’s Class 1 imple-

mentations are intended to demonstrate the highest perfor-

mance achievable by this system [30]. They are written in

a mix of C and assembly code. They are specifically tai-

lored for the Power 775 architecture and carefully hand- and

auto-tuned. They interface directly with the hardware de-
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vice drivers bypassing the entire network stack. They rely on

ad-hoc benchmark-specific communication protocols. They

are intrinsically non-modular, i.e., cannot be composed into

larger application codes. In contrast, the X10 implementa-

tions we entered into the Class 2 competition are built upon

a common network stack and a few constructs (finish, async,

at) that can be composed arbitrarily. The X10 code has been

tuned for Power 775 to a much lesser extent, and runs un-

changed on commodity clusters.

The implementations and performance results we de-

scribe in this section are essentially those obtained for our

winning 2012 Class 2 entry to the HPC Challenge [39] with

minor updates. We first discuss our implementations of the

four benchmarks, then analyze and compare X10 perfor-

mance with IBM’s optimized runs as reported in IBM’s 2012

Class 1 entry [15, 16].

5.1 Implementation

Our SPMD-style implementations of the four benchmarks

mimic the main attributes of the reference implementations.

We discuss each benchmark in turn.

Global HPL. Global HPL measures the floating point rate

of execution for solving a linear system of equations. Perfor-

mance is measured in Gflop/s.

Our implementation features a two-dimensional block-

cyclic data distribution, a right-looking variant of the LU

factorization with row-partial pivoting, and a recursive panel

factorization. It lacks however various refinements of the

reference implementation such as configurable look-ahead,

configurable recursion depth in the panel factorization, and

configurable collective communications. We simply use de-

fault PAMI collectives (via X10’s Team class).

Our implementation uses a collection of idioms for com-

munication: asynchronous array copies for row fetch or swap

and teams for barriers, row and column broadcast, and pivot

search. We take advantage of finish pragmas to make sure

the compiler and runtime recognize that a row swap is a sim-

ple message exchange for instance.

Global RandomAccess. Global RandomAccess measures

the system’s ability to update random memory locations in

a table distributed across the system, by performing XOR

operations at the chosen locations with random values. Be-

cause the memory is spread across all the places, any update

to a random location is likely to be an update to memory lo-

cated at a remote place, not the local place. Performance is

measured by how many Gup/s (Giga Updates Per Second)

the system can sustain.

Our implementation takes advantage of congruent mem-

ory allocation to obtain a distributed array backed by large

pages where the per-place array fragment is at the same

address in each place. It then uses the Torrent’s “GUPS”

RDMA for the remote updates.

Global FFT. Global FFT performs a 1D discrete Fourier

transform on an array of double-precision complex values.

The source and destination arrays are evenly distributed

across the system. FFT stresses the floating point units, net-

work, and memory subsystems. Performance is measured in

Gflop/s.

Our implementation alternates non-overlapping phases of

computation and communication on the array viewed as a

2D matrix: global transpose, per-row FFTs, global trans-

pose, multiplication with twiddle factors, per-row FFTs, and

global transpose. The global transposition is implemented

with local data shuffling, followed by an All-To-All collec-

tive, and then finally another round of local data shuffling.

EP Stream. EP Stream (Triad) measures sustainable local

memory bandwidth. It performs a scaled vector sum with

two source vectors and one destination vector. Performance

is measured in GB/s.

Our implementation of this benchmark follows a straight-

forward SPMD style of programming. The main activity

launches an activity at every place using a PlaceGroup

broadcast. These activities then allocate and initialize the

local arrays, perform the computation, and verify the results.

The backing storage for the arrays is allocated using huge

pages to enable efficient usage of TLB entries.

5.2 Performance Results

For all runs, places are mapped to hosts in groups of 32. In

particular, runs with 32 places or less use a single host. We

run with up to 32,768 places in power-of-two increments.

For Stream, we also run with the full system: 55,680 places.

We use a constant per-place amount of memory (weak scal-

ing). The exact amount is chosen in accordance with the

HPC Challenge guidelines.

For every benchmark, we the same X10 implementation

for all runs. In particular, our single-core “sequential” runs

still use the full, distributed, parallel X10 code.

We plot the resulting performance curves in Figure 1. For

each kernel we plot both the aggregated performance as well

as the per-core performance (per-host for RandomAccess).

We’ll discuss the later four kernels in Sections 6 and 7.

Class 1 Comparison. In Table 1, we compare our perfor-

mance results with IBM’s HPC Class 1 optimized runs on

the system [16].

Unfortunately, the comparison at scale is only indirect

since the reference runs were obtained with larger core

counts, which were not available to us. In addition, our FFT,

HPL, and RandomAccess implementations require the num-

ber of cores to be powers of two. We compare the per-core

performance for the largest X10 and Class 1 runs. Due to

the nature of the benchmarks (for HPL and Stream) and the

architecture of the network (for RandomAccess and FFT),

we believe the Class 1 per-core performance results should

be relatively stable between 32K and 64K cores.5

5 An earlier Class 1 submission for a smaller 1470-host Power 775 system

[15] show results within 7% of the more recent 1989-host submission [16]

we use for comparison purposes.

59



589231 
22.38 (1 core) 

20.62 (1 host) 

17.98 

16.00 

17.00 

18.00 

19.00 

20.00 

21.00 

22.00 

23.00 

0 

100000 

200000 

300000 

400000 

500000 

600000 

700000 

0 8192 16384 24576 32768 

G
fl

o
p

/s
/c

o
re

 

G
fl

o
p

/s
 

Cores 

Global HPL 

Gflop/s Gflop/s/core 

28696 

0.99 (1 core) 

0.88 (1 host) 

0.88 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

0 8192 16384 24576 32768 

G
fl

o
p

/s
/c

o
re

 

G
fl

o
p

/s
 

Cores 

Global FFT 

Gflop/s Gflop/s/core 

843.51 

0.82 

(1 drawer) 

0.82 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

0 8192 16384 24576 32768 

G
u

p
/s

/h
o

st
 

G
u

p
/s

 

Cores 

Global RandomAccess 

Gup/s Gup/s/host 

233287 

396614 

12.6 (1 core) 

7.23 (1 host) 

7.12 7.12 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

16.00 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

400000 

0 13920 27840 41760 55680 

G
B

/s
/c

o
r
e
 

G
B

/s
 

Cores 

EP Stream (Triad) 

GB/s GB/s/core 

356344 

596451 10.929 

(1 core) 

10.900 

(1 host) 

10.875 

10.712 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

0 

100000 

200000 

300000 

400000 

500000 

600000 

700000 

0 13920 27840 41760 55680 

N
o

d
e
s/

s/
c
o

r
e
 (

m
il

li
o

n
) 

N
o

d
e
s/

s 
(m

il
li

o
n

) 

Cores 

UTS 

Nodes/s (million) Nodes/s/core (million) 

6.13 (1 core) 

6.16 (1 host) 

6.29 6.27 

1.000 

0.975 0.978 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

1.00 

1.02 

6.10 

6.15 

6.20 

6.25 

6.30 

6.35 

6.40 

6.45 

0 11760 23520 35280 47040 

P
a

ra
ll

el
 E

ffi
ci

en
cy

 

T
im

e 
(s

) 

Cores 

K-Means 

Time (s) Parallel Efficiency vs. 1 core 

8.61 (1 core) 

12.68 (1 host) 12.84 12.87 

1.000 0.988 
0.985 

0.94 

0.96 

0.98 

1.00 

1.02 

1.04 

1.06 

1.08 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

0 11760 23520 35280 47040 

P
a

ra
ll

el
 E

ffi
ci

en
cy

 

T
im

e 
(s

) 

Cores 

Smith-Waterman 

Time (s) Parallel Efficiency vs. 1 host 

176664 

245153 

11.59 (1 host) 

5.39 

5.21 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

0 11760 23520 35280 47040 

E
d

g
es

/s
/c

o
re

 (
m

il
li

o
n

) 

E
d

g
es

/s
 (

m
il

li
o

n
) 

Cores 

Betweenness Centrality 

Edges/s (million) Edges/s/core (million) 

10.67 (64 hosts) 

6.23 (64 hosts) 

10^18 vertices 

10^20 vertices 

Figure 1. X10 Performance Results
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Global HPL. We use about 55% of the memory of each

host and a block size of 360. With 32,768 places, we mea-

sure an aggregated performance of about 589 Tflop/s, that

is, about 60% of the theoretical peak of 1,024 hosts, which

amounts to about 70% of the effective DGEMM peak perfor-

mance (ESSL).

The single-core performance is 22.38 Gflop/s. The single-

host performance is 20.62 Gflop/s/core. The performance at

scale is 17.98 Gflop/s/core. Hence, the X10 code achieves

a relative efficiency of 80% at scale. The efficiency drops

primarily when scaling from 1 to 1,024 cores. Above 1,024

cores, the efficiency curve flattens. The seesaw is an artifact

of the switch from a n∗n to a 2n∗n block cyclic distribution

for even and odd powers of two.

X10 achieves about 85% of the performance of the

Class 1 run at scale (Gflop/s/core), which divides a matrix

of approximately the same size across 1,989 hosts instead of

1,024.

Global RandomAccess. The per-place table size is fixed

at 2 GB for a total of 64 GB per host, that is, half of

the available memory. We plot results for eight hosts (one

drawer) and above.

We measure 0.82 Gup/s/host at both end of the spec-

trum, that is, with 8 hosts and with 1,024 hosts. In either

case, the per-host interconnect bandwidth is the bottleneck,

hence the “perfect” relative efficiency. In-between the per-

host Gup/s number is significantly lower because the cross-

section bandwidth becomes a bottleneck as discussed in Sec-

tion 4. For smaller runs (4 hosts or less, not plotted), other

network bottlenecks come into play (switching, beyond the

scope of this paper), and the performance per host is lower.

These phases are intrinsic to the interconnect and can be ob-

served also with the Class 1 or UPC code.

Overall, the performance of the X10 code matches the

performance of the UPC code for the same benchmark, as

well as the performance of a direct C implementation against

PAMI. In comparison, the reference code (which bypasses

PAMI) achieves 1.02 Gup/s/host at scale.

Global FFT. For even powers, each place uses 2 GB of

memory. For odd powers, only 1 GB is used. Hence either

half or a quarter of the memory of the host.

With one place, we measure 0.99 Gflop/s. At scale, the

rate reduces to 0.88 Gflop/s per core. In-between, as we

observed for RandomAccess, the per-core performance is

significantly hindered by the relatively low cross-section

bandwidth.

We only achieve about 41% of the per-core Class 1 per-

formance at scale. The primary bottleneck lies in our sequen-

tial code. On Power 775, the All-To-All time represents only

a small fraction of FFT’s total execution time. Unfortunately,

we did not have sufficient time on the system to hand- or

auto-tune our sequential code (data shuffle and 1D FFT) or

to experiment with computation communication overlap.

EP Stream. We use 1.5 GB of memory per place.

The per-place memory bandwidth decreases as the num-

ber of places per host increases. It drops from 12.6 GB/s

with one place to 7.23 GB/s with 32 places due to the QCM

architecture for a total of 231.5 GB/s for a single host. Our

single-host measurements match the performance of the ref-

erence OpenMP EP Stream (Triad) implementation.

With 32 places and above, the per-place memory band-

width is essentially constant. The total system bandwidth at

55,680 places (1,740 hosts) is about 397 TB/s, which ex-

ceeds 98% of 1,740 times the single-host bandwidth. We at-

tribute the 2%-loss to jitter and synchronization overheads.

Our single-host number represents about 87% of the

Class 1 result, which takes advantage of Power7 prefetch-

ing instructions that we do not. It may be possible to use

xlC to generate assist threads for data prefetching for this

benchmark and others, but we have not yet experimented

with doing so.

Summary. As shown in Table 1, our relative performance

compared to the Class 1 runs varies from 41% for FFT to

87% for Stream. As discussed earlier, due to configuration

discrepancies these numbers are only estimates. Neverthe-

less, we believe that they demonstrate that X10 can deliver

solid performance at scale even compared to the best codes

tuned by IBM’s best experts.

In Table 2, we compute that the per-host performance at

scale of the X10 code never drops below 87% of the single-

host performance for any of these four benchmarks.

We select this particular comparison as our main scala-

bility metric for two reasons. First, the performance scaling

from one core to one host is not expected to be linear in gen-

eral as the memory bandwidth does not scale linearly due to

bus contention. Second, the performance per host for parti-

tions of intermediate size is gated by the cross-section band-

width bottleneck for communication-bound benchmarks.

6. Unbalanced Tree Search

The workload in any of the four HPC Class 2 Challenge

benchmarks can be partitioned statically across a distributed

system effectively. We now consider a benchmark that is not

amenable to such static partitioning but requires advanced

dynamic distributed load balancing techniques to scale to

large distributed systems.

The Unbalanced Tree Search benchmark measures the

rate of traversal of a tree generated on the fly using a split-

table random number generator. For this work, we used a

fixed geometric law for the random number generator with

branching factor b0 = 4 and seed r = 19, and tree depth d

varying from 14 with one place to 22 at scale (weak scaling).

The nodes in a geometric tree have a branching fac-

tor that follows a geometric distribution with an ex-

pected value that is specified by the parameter b0 > 1.

The parameter d specifies its maximum depth cut-off,
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Benchmark X10 Implementation HPC Class 1 Optimized Runs Relative Performance

Cores Performance at Scale Cores Performance at Scale

Global HPL 32,768 589.231 Tflop/s 63,648 1343.67 Tflop/s 85%

Global RandomAccess 32,768 843.58 Gup/s 63,648 2020.77 Gup/s 81%

Global FFT 32,768 28,696 Gflop/s 62,208 132,658 Gflop/s 41%

EP Stream (Triad) 32 231.481 GB/s 32 264.156 GB/s 87%

Table 1. Performance Comparisons for the HPC Class 2 Challenge Benchmarks

Benchmark Performance of the X10 Implementation Host Count Relative Efficiency

With One Host At Scale At Scale

Global HPL 20.62 Gflop/s/core 17.98 Gflop/s/core 1,024 87%

Global RandomAccess 0.82 Gup/s/host 0.82 Gup/s/host 1,024 100%

Global FFT 0.88 Gflop/s/core 0.88 Gflop/s/core 1,024 100%

EP Stream (Triad) 7.23 GB/s/core 7.12 GB/s/core 1,740 98%

UTS 10.900 M nodes/s/core 10.712 M nodes/s/core 1,740 98%

K-Means 6.16s run time 6.27s run time 1,470 98%

Smith-Waterman 12.68s run time 12.87s run time 1,470 98%

Betweenness Centrality 11.59 M edges/s/core 5.21 M edges/s/core 1,470 45%

Table 2. Relative Efficiency: Performance at Scale versus Single-Host Performance (for the Same X10 Implementation)

beyond which the tree is not allowed to grow ... The

expected size of these trees is (b0)
d, but since the ge-

ometric distribution has a long tail, some nodes will

have significantly more than b0 children, yielding un-

balanced trees. [25]

The depth cut-off makes it possible to estimate the size of

the trees and guess parameters for a target execution time,

but should not be used to predict subtree sizes. In other

words, all nodes are to be treated equally for load balancing

purposes, irrespective of the current depth.

6.1 Implementation

Our implementation follows from [35]. It uses global work-

stealing with random steals followed by lifeline steals and

hyper-cubes for the lifeline graphs.

Lifeline-based Global Work Stealing. Every worker (one

per place) maintains a list of pending nodes to process

(nodes not counted yet). Each worker primarily processes

its own list. If the list becomes empty, the idle worker at-

tempts to steal nodes from another worker. Steal attempts

are first random – a victim worker is randomly selected –

and synchronous – the thief wait for the attempt to com-

plete either successfully – the victim list was not empty –

or unsuccessfully – the victim was also idle. Past a few ran-

dom attempts, the thief falls back to a fixed precomputed

list of victims called lifelines, sends requests to these and

dies. Lifelines have memory. If a request for work cannot be

served immediately because the lifeline itself is idle, then if

the lifeline later manages to obtain new nodes to process, it

will split these nodes between itself and others as requested,

resuscitating dead workers in the process.

Intuitively, random attempts are very effective at dis-

tributing work when most workers are busy, whereas life-

lines are effective at propagating work quickly when many

workers are idle. Lifeline “edges” are organized in graphs

with both low diameters and low degree such as hyper-cubes

to co-minimize the distance between any two workers and

the number of lifeline requests in flight.

Because workers die when unsuccessful at random steals

the overall termination of the counting can be implemented

with a single finish construct. Each worker is implemented

with one async task. Resuscitation is also one async task.

Work is initially distributed from the root worker in one

tree-shaped wave. See [35] for more details.

Refinements. We first improve the scalability beyond [35]

by (i) further reducing the overhead of termination detection,

(ii) shaping the network traffic, and (iii) improving the work-

queue implementation.

We use the FINISH_DENSE algorithm for the root finish

responsible for detecting the termination of the tree traversal.

We use an algorithm akin to FINISH_HERE to detect the

termination of steal attempts – outgoing request followed by

incoming response.6 The root finish only accounts for the

initial work distribution as well as the redistribution along

lifelines but is oblivious to rebalancing operations resulting

from successful random steal attempts.

We precompute for each place a set of potential victims

with no more than 1,024 elements to bound the out-degree of

the communication graph. We observe a severe degradation

of the network performance at scale without such a bound.

6 We could use the standard FINISH_HERE algorithm instead, but we have

not yet rewritten our UTS code to confirm that the performance is the same.
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We adopt a more compact representation of the nodes re-

maining to be processed in a place, by directly represent-

ing intervals of siblings in the tree as intervals (lower, upper

bounds) instead of using expanded lists of nodes.

Finally, to counteract the bias introduced by the depth cut-

off, a thief steals fragments of every interval in the work list.

There are few of them since we traverse the tree depth first.

The last two changes are tailored for UTS for shallow

trees and make a tremendous difference for these, but are

not likely to help as much for deep and narrow trees. The

earlier improvements however are applicable to distributed

work stealing in general. We include them in the GLB library

(see Section 3.4).

6.2 Performance Results

We run from one to 32,768 places in power-of-two incre-

ments and then at scale with 55,680 places. Figure 1 shows

the total number of nodes processed per second as well as

the per-place processing rate. We increase the depth of the

tree from 14 with one place to 22 with 55,680 places so as

to obtain runs of duration ranging from 90 to 200 seconds.

The per-place processing rate varies from 10.929 million

nodes per second for one place to 10.712 million nodes per

second at scale. The single-place performance is identical

to the performance of the sequential implementation (no

parallelism, distribution, or load balancing). The distributed

implementation at scale achieves 98% parallel efficiency.

At scale, we traverse a tree of 69,312,400,211,958 nodes

in 116s, that is, about 596 billion nodes/s. As part of this

traversal, we compute 17,328,102,175,815 SHA1 hashes

(for random number generation). In contrast, the algorithm

from [35] achieves its peak performance with a few thou-

sand cores and slows down to a crawl beyond that due to

overwhelming termination detection overheads and network

contention. We tried traversing the same tree at scale with

the original algorithm and had to kill the run after an hour.

7. Other Benchmarks

In this section, we briefly review the three remaining kernels:

K-Means, Smith-Waterman, and Betweenness Centrality.

K-Means. K-Means clustering aims to partition n points in

a d-dimensional space into k clusters so as to minimize the

average distance to cluster centroids. We implement Lloyd’s

algorithm [21]. Given arbitrary initial centroids, it iteratively

refines the clusters and centroids.

We partition the points across p places. In parallel at each

place, we classify the points by nearest centroid and compute

the average positions of the per-place points in each cluster.

Then we use two All-Reduce collectives to compute the

averages across all places. They provide updated centroids

for the next iteration.

We run with 40000p points with p places and 4096 clus-

ters (dimension 12). We measure the running time for 5 it-

erations. It varies from 6.13s with one place to 6.27s with

47,040 places. Efficiency versus a single place never drops

below 97%.

Smith-Waterman. The Smith-Waterman algorithm is a dy-

namic programming algorithm to compute the best possible

alignment (partial match) of a short DNA sequence against

a long DNA sequence.

We parallelize the computation by splitting the long se-

quence into overlapping fragments and computing in parallel

the best match of the short sequence against each fragment.

The best overall match is the best of the best matches.

We run with a short string of 4000 elements and a long

string with 40000p elements. We report the running time for

5 iterations of the benchmark. We measure 8.61s for one

place, 12.68s for one host (32 places), and 12.87s at scale

with 47,040 places. The running time increases from 1 to 32

places because of memory bus contention. Scaling out from

one host to 1,470 hosts we only lose 2% efficiency.

Betweenness Centrality. Betweenness centrality measures

the “centrality” of a node in a graph, i.e., the number of

shortest paths from all vertices to all others that pass through

that node. We compute this measure for each node in an

undirected R-MAT graph [6] using Brandes’ algorithm [5].

Since even a small graph incurs a significant amount

of computation, we replicate the graph in every place. We

randomly partition the vertices across places. Each place is

responsible for computing the centrality measure for all its

vertices. These computations are local and independent.

We run with one host up to 1,470 hosts. Because BC is not

amenable to perfect weak scaling, we consider two different

problem instances. With 2,048 places or less, we consider a

graph with 218 vertices and 221 edges. With 2,048 places or

more, we consider a graph with 220 vertices and 223 edges.

At scale we traverse 245 Billion edges per second.

There is a significant performance drop at 2,048 places

when we increase the problem size, due – we speculate –

to the increased footprint of the graph. With a fixed-size

graph between 32 and 2,048 places, the number of traversed

edges per place and per second reduces from 11.59 million

to 10.67 million. With the larger graph, we measure 6.23

million edges/s/place with 2,048 places and 5.21 million

with 47,040 places. Therefore, while the measured relative

efficiency is only 45% at scale (Table 2), the “corrected”

efficiency is 77% if we discount the performance drop due

to the switch to a larger graph.

The remaining 23% primarily results from increasing un-

balance. The computation of the centrality measure takes a

variable amount of time depending on the vertex position

in the graph. By randomizing the partition, we can mitigate

this unbalance, but only to a degree. The smaller the parts,

the higher the imbalance.

Since we collected these results, we have implemented

BC on top of the GLB library to dynamically distribute the

load across all places [43]. The resulting code has better

efficiency.
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8. Related Work

We structure the discussion of related work around the three

main contributions of this paper: scalability of APGAS con-

structs, performance evaluation of high-productivity pro-

gramming models, and algorithmic advances for dynamic

distributed load balancing in the context of the Unbalanced

Tree Search problem.

APGAS scalability. Our work on scalable finish is re-

lated to prior work in the Charm parallel programming sys-

tem to develop a scalable algorithm for quiescence detec-

tion [36]. As in X10, Charm’s core execution model com-

bines asynchronous distributed tasks with the ability to de-

termine when a collection of tasks has completed. Charm++

supports the ability to detect completion of a set of tasks or

global quiescence of the entire computation [19]. Algorith-

mically, Charm’s Counting algorithm and the Task Balanc-

ing algorithm [4] used by X10 as the most general imple-

mentation of finish make different time/space trade-offs.

The Counting algorithm uses asymptotically fewer counters,

but requires two phases to detect termination. Each phase

involves communicating with all the tasks in scope. This is

ill-suited for X10 where termination detection scopes are nu-

merous, usually nested, and overlap places. Additionally, we

have developed specialized algorithms for commonly occur-

ring usage patterns finish.

The Co-Array Fortran 2.0 finish construct also ensures

the global completion of a set of asynchronous tasks [23].

Because CAF is SPMD-centric, its finish is designed for

this special case, specified as a collective operation, and

implemented with rounds of termination detection as in

Charm++. X10’s finish is not limited to SPMD patterns,

but we provide a specialized implementation for the SPMD

case (FINISH_SPMD pragma).

Chapel also incorporates distributed asynchronous tasks

and finish-like synchronization with its begin, on and sync

constructs [9]. The techniques we have developed for scaling

finish should be applicable to Chapel.

Productivity and performance. As illustrated by the sub-

missions to the HPC Challenge Class 2 competitions [14],

there has been significant prior work on improving the per-

formance and scalability of high-productivity programming

models. Performance results on machines ranging from hun-

dreds to tens of thousands of nodes have been reported for

PGAS languages such as Co-Array Fortran [23], UPC [1],

Chapel [7], and X10 [39] and for programming models such

as Charm++ [18] and XcalableMP [24]. The results we re-

port in this paper represent significantly higher levels of ab-

solute performance and/or scalability than was achieved in

previous systems.

X10’s productivity has been modeled as well as em-

pirically studied by IBM as part of the HPCS PERCS

project [12] and independently by X10 users [27]. While

type or memory safety have the same productivity benefits

at small and large scale, prior productivity analyses have

not confirmed or refuted the value of APGAS constructs at

very large scale. With this work, we demonstrate that these

constructs do perform at very large scale, hence continue to

deliver productivity to the programmer.

Our congruent memory allocator is similar to many sym-

metric memory allocators. It permits data structures to be

at predictable but not necessary identical addresses in each

place. This helps maximizing TLB utilization when multiple

places are running on the same node. The IBM UPC imple-

mentation studied approaches for scalable congruent mem-

ory allocation and developed the Shared Variable Directory

as one such scalable technique [3]. Our approach is more

restricted, but does demonstrate how custom memory allo-

cation can be integrated into a type safe and mostly garbage-

collected programming language.

UTS. UTS, an excellent example of an irregular applica-

tion, was first described by Prins et al. [28]. Olivier and

Prins [26] provided the first scalable implementation of UTS

on clusters that provided up to 80% efficiency on 1,024

nodes. To this end, they employed a custom application-

level load balancer along with optimizations such as one-

sided communications and novel termination detection tech-

niques. Dinan et al. [10] provide a framework for global load

balancing, which was used to achieve speedups on 8196 pro-

cessors. Global load balancing and termination detection fa-

cilities were provided to express irregular applications. By

reserving one core per compute node on the cluster exclu-

sively for lock and unlock operations, this framework al-

lowed threads to steal work asynchronously without disrupt-

ing the victim threads. However, the cost paid was a static

allocation (one core out of every eight) for communication.

This results in lower throughput because the thread is not

available for user-level computations. Saraswat et al. [35]

introduced lifeline-based global load balancing and showed

87% efficiency on 2048 nodes. An implementation of the

life-line algorithm in Co-Array Fortran achieved 58% ef-

ficiency at 8192 nodes [23]. A more recent UTS code us-

ing CAF 2.0 finish construct achieves a 74% parallel effi-

ciency on 32,768 Jaguar cores [42]. In comparison, our code

reaches 98% parallel efficiency with 55,680 Power7 cores.

Work-stealing schedulers have been developed for X10

both in the context of intra- and inter-node load balancing.

For the intra-node case, pure runtime techniques have been

developed [13] as well as compiler-supported techniques

[40]. For the inter-node case, the GLB library based on the

scheduler developed for UTS in [35] enables the automated

distributed load balancing of locality-insensitive tasks using

global work stealing.

We have recently incorporated our improvements to the

UTS scheduler to the GLB library and implemented Be-

tweenness Centrality on top of GLB [43]. We were able to

confirm that GLB can effectively balance BC and improve

its efficiency at scale.

64



9. Summary

We implemented eight application kernels in X10 and ran

them at scale on a petaflop Power 775 supercomputer. Ex-

cluding Betweenness Centrality, we measure an efficiency

at scale (for 1,024 hosts or more) consistently above 87% of

the single-host efficiency. For the four HPC Class 2 Chal-

lenge benchmarks, X10 achieves 41% to 87% of the top per-

formance numbers reported for this system.

We show that X10’s finish construct for distributed ter-

mination detection delivers performance at scale. We use

finish to block for the delivery of a single asynchronous

message, wait for the termination of a regular SPMD-style

distributed computation, or control a distributed load balanc-

ing kernel, among other things. We believe there is a great

productivity benefit in having a unique, universal, yet scal-

able mechanism for termination detection.

We show that hardware-accelerated communication prim-

itives like RDMAs and collectives can be integrated into

X10 via libraries and that accounting for low-level mem-

ory requirements can be achieved without crippling X10’s

automated memory management and safety.

To the best of our knowledge, our UTS implementation

for geometric trees is the first to scale to petaflop systems.

Asynchrony and distributed termination detection are essen-

tial to any scalable UTS implementation. We believe that the

X10 language and tools gave us the ability to experiment

with the UTS code like no other programming model would,

ultimately giving us the keys to performance at scale.

We focus on scale out: we want as many places as pos-

sible to stress our finish implementations, etc. Therefore,

we run with one place per core and implement the bench-

mark codes with minimal intra-place concurrency. A more

natural APGAS implementation however would take advan-

tage of intra-place concurrency, run with only one or a few

places per host, and probably perform marginally better.

While collecting our performance results, we observed

many times the practical benefits of the asynchronous pro-

gramming style advocated for by X10. If a single core is not

performing optimally, a statically scheduled code like HPL

suffers greatly. With UTS however, there is no measurable

impact as the load is dynamically pulled from the bad core.
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