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Abstract

Despite the growth of multi-core technology, a large subset of programmers still have nei-

ther the tools nor the language features to write concurrent programs e�ectively. When

many programmers are simultaneously working on large, complex code bases with un-

known bugs and insu�cient documentation, they are unlikely to be very productive unless

the programming language a�ords them the power to create abstractions and modularise

their code. Applications are formed by composing independent modules. However, con-

current algorithms do not compose well. Using classical language features such as locks

and compare-and-swap operations, one either has to rewrite the algorithm from scratch

or expose its internal implementation to the client.

Atomic sections have simple semantics and allow programmers to compose concur-

rent algorithms. However, atomic sections are typically implemented using transactions.

Thus, they lack performance and are restrictive to programmers. Here, we explore the

implementation of atomic sections using locks instead of transactions.

Firstly, we give a type system that uses universe type annotations (a form of ownership

types) to verify that programmer-supplied locks are su�cient to give race safety and

implement programmer-denoted atomic sections. We prove that the system prevents

races during execution, and give some extensions including a type system for checking

that atomic sections have been implemented correctly.

Secondly, we develop a program analysis that facilitates implementing atomic sections

(denoted by the programmer) with automatically-inserted locks. There is no annotation

overhead since everything is inferred. Since the implementation takes complete respon-

sibility for the locking protocol used, the programmer does not need to know that locks

are being used internally. This means we must ensure the program does not deadlock,

for which we use runtime deadlock detection and rollback. Our program analysis builds

on related work by having improved accuracy, a nice characterisation of recursive object

structures, and a machine-checked proof of correctness.
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Chapter 1

Introduction

It is commonly known [80] that future execution speed improvements in typical consumer

grade computers will come from adding more independent processing elements, rather

than increasing the clock rate of individual cores. This is due to physical limitations that

are being approached in microprocessor design [10]. As such, software will increasingly

need to be multi-threaded in order to make full use of the available hardware. Com-

putationally intensive software that remains single-threaded will not perform as well as

competing multi-threaded software that is able to to exploit multi-core. Conventionally,

the majority of programmers use threads and locks to write multi-threaded programs.

Unfortunately, programmer-inserted locks do not scale to the kinds of massively large

programs that are now common place.

When programming multiple threads using locks, traditional mechanisms and software

engineering methodologies no longer provide programmers with the encapsulation and

modularity they need to write large programs. Encapsulation and modularity are essential

when many programmers are working on the same program and thus the knowledge

of the system is distributed. Further factors, e.g., bugs and undocumented code, help

create an environment where no single person has comprehensive knowledge of the system.

Separating unrelated pieces of code into modules and hiding implementation details within

these modules would normally allow software to be written in such an environment, but

10



CHAPTER 1. INTRODUCTION 11

when locks are involved this is no longer the case. This problem has prompted the search

for more tractable language support for concurrency control.

Atomicity [60] is a property a block of code is said to have when its behaviour is

una�ected by other threads. The term derives from the idea that other threads are not

aware of the internal steps of computation, only the complete undivided e�ect of the block

of code. We will sometimes say a block of code is atomic if it has the property of atomicity.

It is easy to reason about the behaviour of atomic code in a multi-threaded program since

the e�ect of other threads can be disregarded and the problem is reduced to that of a

single-threaded program. We consider the core activity of lock-based programming to be

the search for a set of lock annotations that ensures the atomicity of a given block of code.

This core activity is hard and mistakes lead to bugs that are very hard to reproduce and

locate. However, if we know the programmer's high-level intent, in terms of atomicity,

we are in a position where we can provide them support.

There are a number of methods where blocks of code that are intended to be atomic

are annotated as such. One possible use for these annotations is to check whether

programmer-supplied lock annotations are su�cient to ensure the intended atomicity,

otherwise providing useful error messages. Another approach is to enforce the atomicity

automatically, without input from the programmer. This thesis attempts to advance the

state of the art in both approaches and we will now discuss them individually.

1.1 Lock Checking

Lock checking is where programmer-supplied locks are checked to make sure they are

su�cient to ensure a block of code is atomic. Usually lock checking tools require blocks

of code to be annotated as atomic when that is the intention, as well as requiring the

programmer to use locks to engineer the atomicity. Such systems often use novel type

annotations that allow the programmer to express relationships between objects and locks

that are invariant at run-time. The relationship de�nes the lock that should be taken to
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protect a given object. For example, a linked list with all its nodes may be protected by

a given lock stored in the encapsulating linked list object. The type annotations and lock

insertions are checked by the compiler to ensure they are correct and mutually consistent,

which then implies the atomicity has been successfully attained.

Previous work [31, 11] uses ownership type annotations [14, 72] (or �guard� annotations

that strongly resemble ownership) to establish an invariant relationship between objects.

If locks are just special kinds of objects then such relationships can be used to statically

de�ne which lock protects an object referenced by a particular variable. The system thus

knows which locks to take to protect a block of code just by observing the types i.e.,

without precisely knowing the objects that will be accessed. This requires object types

to have ownership annotations as well as the atomic annotations and the locking code

itself. Additionally, classes can have ownership parameters that allow the expression of

reusable data structures employing complex ownership structures, albeit at the expense

of heavier type annotations.

Universe types [67, 24] are a simple yet powerful form of ownership types, used in the

JML tools [58]. When compared with other ownership type systems, universe types let

programmers succinctly specify the topological relationship between objects using just

a few keywords. As such, the owner of an object is implicitly understood by the type

system, and implicitly stored by the run-time environment. Thus, programmers need not

explicitly declare them and the annotation burden is lessened.

We developed a type system for race safety using universe types to partition the heap.

Race safety is a slightly weaker property than atomicity and we ensure it by requiring

all accesses to be protected by lock acquisitions. We prove the system is sound and

provides race safety. We then show how the system can also ensure atomicity with a

small extension, which additionally constrains the nesting of lock acquisitions. As is

standard, we treat objects sharing the same owner as guarded by the same lock. At

run-time we associate this lock with the owner. All objects have an implicit reference to
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their owner.

Universe types also allow references to objects whose owner is unknown through the

annotation any [25]. This is not supported by [31, 11]. Initially, the presence of any was

a challenge for us, but turned out to increase the expressiveness of our language. The

any annotation allows the expression of data structures that contain objects with various

owners. Use of such data structures does not require us to compromise the design of

other data structures in our program. This improves upon [11, 31], where in particular

one sometimes has to alter the design of unrelated data structures so that they take their

lock once for each access in an iteration. Iterating over the unrelated structures can be

atomic in our system but could not be made atomic in [11, 31]. We will give a detailed

comparison later (�3.3).

When the type does not indicate the owner of an object, we use paths as an alternative

mechanism to guarantee correct synchronisation. Paths are sequences of �eld accesses

starting from a variable, e.g., x.f.g and can be arbitrarily long. We use an e�ects system

where these paths need not be comprised entirely from �nal variables/�elds as would be

required in previous work [11, 31]. Programmers would �nd this requirement restrictive.

Related work also required locks to have coarse granularity even if only a single object

was accessed. It was straightforward to extend our system with single object locks.

Figure 1.1 gives an example of a program that is protected by our type system. There

is a pair of linked list implementations, Dept and Hall, and two iterations over the objects

in the linked list, releaseMarks and cleanRooms. We will discuss this example in detail

later (�3). For now, notice the rep, peer, and any universe type annotations on object

reference types. These are used to specify the ownership structure that will be maintained

by the program at run-time. Objects that are encapsulated by the current object are

denoted with rep, and if an object is at the same level of encapsulation then it is a peer.

We have also given a snapshot of the heap that shows objects of the various classes,

the references between them (arrows), and also the ownership relationships, which are
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1 class Student {

2 int mark;

3 boolean roomClean

4 }

5
6 class Dept {

7 rep DeptStudentNode first;

8 void releaseMarks () { ... }

9 }

10
11 class DeptStudentNode { // Closed list

12 peer Student s;

13 peer DeptStudentNode next;

14 }

15
16 class Hall {

17 rep HallStudentNode first;

18 void cleanRooms () { ... }

19 }

20
21 class HallStudentNode { // Open list

22 any Student s;

23 peer HallStudentNode next;

24 }

25
26 void releaseMarks () {

27 sync (this) {

28 rep DeptStudentNode i = this.first;

29 sync (i) {

30 while (i!=null) {

31 i.s.mark = ...;

32 i = i.next;

33 } } } }

34
35 void cleanRooms () {

36 sync (this) {

37 rep HallStudentNode i = this.first;

38 sync (i) {

39 while (i!=null) {

40 sync (i.s) {

41 i.s.roomClean = true;

42 }

43 i = i.next;

44 } } } }

(1)    Dept

(5)     Student

(3)     Student(2)    DeptStudentNode

(4)    DeptStudentNode

(8)    Hall

(9)     HallStudentNode

(10)    HallStudentNode

(11)    HallStudentNode

(7)     Student

. . .

(6)    Dept

Figure 1.1: Example program showing heap hierarchy structure
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denoted by nested boxes. This ownership structure is used by the type system to ensure

the programmer-supplied locks given by the sync statements are su�cient to eliminate

race conditions.

Referring to the heap diagram, the linked list comprised of HallStudentNode objects

at addresses (9), (10), and (11) have the same owner, the Hall at (8). Thus their next

�eld de�ned at line 23 has type peer. On the other hand their s �eld de�ned at line 22

is used to store references to students with various owners and thus its type annotation

must be any. We call this an open list.

The linked list of DeptStudentNode objects at (2), and (4) is similar but its s �eld

references students owned by the same object 1 as the nodes themselves. Thus the

annotation used at line 12 is peer, the same as its next �eld. Since the students are more

contained, we call this a closed list. We will formalise these type annotations and revisit

open and closed lists later (�3).

The types therefore re�ect the run-time ownership hierarchy, and we use this to check

the locks. Our sync statement is used by the programmer to specify where locks should

be acquired and released. It is similar to the Java synchronized block except that our

synchronized block is designed to work with the object hierarchy. To protect an object,

one should sync on any object that has the same owner. At line 30 we iterate over a

closed list of students such as illustrated by the objects (2), (3), (4), and (5), setting their

marks to an unspeci�ed quantity. Since this is a closed list, we know from the soundness

of the type system that all these students are owned by the same object as the �rst node.

Thus it is su�cient for race safety to lock just the �rst node for the duration of the loop,

which we do at line 30.

To ensure the full property of atomicity, one also needs to constrain the nesting of

sync blocks. For instance, the body of releaseMarks is atomic whereas cleanRooms is

not. The reason is that the additional sync within the loop at line 41 is executed many

times during the loop and at run-time the locks are not properly nested. The consequence



CHAPTER 1. INTRODUCTION 16

of this is that other threads can observe a state where only some of the students rooms

have been cleaned. In real code, this could lead to a race condition. This is not the

case with releaseMarks. As far as other threads can observe, the marks are released

instantaneously with no opportunity to observe some students' marks but not others.

In later sections we will give in full detail the universe type system we use. We

will then give full details of the the race safety type system that uses the universe type

system including proofs of correctness. Finally we show how to extend the type system

to constrain the nesting of locks in order to ensure the full property of atomicity.

1.2 Lock Inference

When programs only contain blocks that are annotated as atomic, without explicit lock-

ing, we call them atomic sections. Ensuring that atomic sections obey the atomicity

property is the responsibility of the compiler and run-time system and transparent to the

programmer. This considerably reduces the burden of multi-threaded programming. This

transparency allows many di�erent implementation strategies. Although atomic sections

allow the programmer to pretend a block is executed in the absence of other threads, such

an implementation would have poor performance. Allowing non-interfering threads to ex-

ecute in parallel with the atomic section is therefore a transparent optimisation. Current

implementations of atomic sections do this using either transactional memory [1, 66] or

lock inference [49, 41, 13]. The more e�cient implementations of transactions and all lock

inference implementations, including ours, prohibit the access of shared objects outside

of atomic sections.

Transactional memory rolls back the state of an atomic section, to the entry state

of the block, when the state is detected to be corrupted by interference. This means

I/O or system calls cannot be allowed in atomic sections, a restriction that cannot in

general be hidden from the programmer. When a state is rolled back, the cycles that

contributed to that state are wasted. There is further waste because the machinery that
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detects interference and facilitates the rollback incurs considerable run-time overhead.

Lock inference is a compile-time technique that inserts locking code into the program

to ensure the atomicity of the atomic sections. Lock inference does not restrict I/O or

require any run-time mechanisms (except the locks themselves), but since it relies on static

approximation of program behaviour, it sometimes lacks precision. The more precise the

inference, the more threads are allowed to execute in parallel.

Whatever mechanisms are used by the implementation, they must be designed care-

fully. Any emergent behaviours such as deadlocks or livelocks must be prevented or

otherwise not exposed to the programmer, who should be able to use atomic sections free

from implementation-speci�c constraints. Programmers should not have to design their

code so that the lock inference can easily understand it, nor should they be forced to obey

the restrictions of transactional memory.

Our lock inference algorithm is designed to give good precision. Whereas previous

work relies on pointer analysis to statically model program behaviours, we use a more

direct approach that has more in common with how programmers decide which locks to

insert manually. We also use a run-time deadlock detection technique that permits using

locks of a �ner granularity. We give a formalisation of our algorithm and prove it correct.

We use a data-�ow analysis, at link or JIT time, to infer the object accesses performed

by each atomic section. This analysis needs to traverse any code that might be invoked

by the block in question, so the whole program is needed. When the analysis terminates,

we know, at each program point, the set of objects that are accessed from that point

until the end of the atomic section. The inferred accesses then need to be translated into

locks. We believe our representation of accesses is novel, and the most precise to date.

As a simpli�cation all objects after construction are shared.

We try and use one lock per object, or instance locks, where possible, so that the

parallelism can scale with the data. Sometimes code can access a statically unbounded

number of objects. This happens during iterations over objects, and when we approximate
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1 class HashEntry {

2 string key; Object val; HashEntry next;

3 HashEntry (string key) { this.key = key; }

4 HashEntry findKey (string key) {

5 if (this.key==key) {

6 return this;

7 } else {

8 if (next==null) { return null; }

9 else { return next.findKey(key); }

10 } } }

11
12 class HashTable {

13 HashEntry[] buckets;

14 HashTable() { buckets = new HashEntry[100]; }

15 int index(string key) {

16 int hash = key.hash % buckets.length;

17 if (hash<0) { hash = hash + buckets.length; }

18 return hash;

19 }

20 HashEntry createHashEntry(string key) {

21 HashEntry entry = new HashEntry(key);

22 int index = index(key);

23 entry.next = buckets[index];

24 buckets[index] = entry;

25 return entry;

26 }

27 HashEntry findHashEntry(string key) {

28 HashEntry entry = buckets[index(key)];

29 if (entry==null) { return null; }

30 return entry.findKey(key);

31 } }

32
33 class Client {

34 string name; HashTable allClients; Client interlocutor;

35 Client (HashTable allClients, string name) {

36 this.allClients = allClients; this.name = name;

37 atomic { //locks: {allClients, !allClients.buckets}

38 HashEntry e = allClients.createHashEntry(name);

39 e.val = this;

40 }

41 run();

42 }

43 string read() { return ""; }

44 void accept(Client source, string msg) {

45 atomic { //omitted

46 print "<"+source.name+"> ---> <"+name+"> "+msg;

47 } }

48 void run() {

49 while (true) {

50 string msg = read();

51 if (msg=="connect") {

52 string name = read();

53 atomic { //locks: {HashEntry}

54 HashEntry e = allClients.findHashEntry(name);

55 interlocutor = (Client) e.val;

56 } }

57 if (msg=="send") {

58 string cargo = read();

59 atomic { //locks: {this, interlocutor}

60 interlocutor.accept(this,cargo);

61 } }

62 if (msg=="disconnect") {

63 atomic { //locks: {!this}

64 interlocutor = null;

65 } } } } }

Figure 1.2: Example program showing what locks implement each atomic section
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an array index expression. In such cases, we use the type of the accessed objects to take

a multilock which guards all instances of that type and sub-types. The semantics of

multilocks require that if one thread has taken the multilock on an object, any other

threads attempting to lock a subordinate instance of that multilock will be blocked until

the multilock is released. We also distinguish between read/write accesses, and we use

read/write locks to allow multiple parallel reads. We need re-entrant locks in case objects

happen to be aliased at run-time, causing the same lock to be taken twice.

The code in Figure 1.2 is for an instant messaging system, where a client can send

a stream of messages to another client, by name, through a central server. The Client

constructor registers a new client in a centralised hash table of clients. This must be

an atomic operation in order that the uninitialised value of the hash entry e.val is not

visible to other threads. Our system infers two locks � the hash table itself (for reading),

and the array of buckets inside the hash table (for writing). Although the hash entry

is modi�ed, it is a newly constructed object and thus cannot be seen by other threads.

We give the inferred locks as comments in the code, where ! preceding the lock denotes a

write lock.

The atomic section starting on line (53) iterates (HashEntry.findKey is recursive)

through a list of hash entries, and thus the analysis has to lock (for reading) the multilock

that subsumes every hash entry. Atomic sections starting on lines (59) and (63) simply

access a pair of clients and a single client object, and the locking re�ects this. The atomic

section starting on line (45) is only ever called from within another atomic section starting

on line (59), so does not have any locking code inserted into it. If it were also called from

a pre-emptive context (i.e. from outside an atomic section), we would have a problem

inserting locking code into it, because this code would also be executed by the atomic

section starting on line (59). We solve this problem by duplicating functions if they are

called from both atomic and pre-emptive contexts.

Our program analysis gives us information about what locks should be held at every
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program point in the atomic section. This means we have enough information to release

locks straight after the last access of any objects they guard. Releasing locks early reduces

contention, at no extra cost.

1.3 Outline of Thesis

In Chapter 2 we give some background. We describe locks, and we recall common practice

when using them to solve concurrency problems. Using a running example, we discuss

the interplay between modularity, encapsulation, and locks. We then show how atomicity

can be used to e�ectively convey the notion of encapsulation in the context of multiple

threads. We then survey a selection of related work that uses the notion of atomicity to

enhance programming language technology. We give more detailed descriptions of lock

checking, lock inference, and transactional memory.

In Chapter 3 we introduce our lock checking type system, which uses universe types

to partition the heap. This is initially presented as a type system that prevents race

conditions, but later extended to ensure atomicity. The extension is only to ensure locks

are nested correctly. We also give an extension that allows locking both single objects

and groups of objects, with appropriate exclusion. We prove soundness and race safety

of the type system.

In Chapter 4 we give a program analysis that can be used to automatically insert locks

in order to ensure atomicity of a given atomic section. We prove soundness of the analysis

mechanically. We give the lock insertion scheme and explain how we handle deadlock,

early release of locks, and some more advanced language features like arrays, casts, and

message passing. We �nally do a case study on some real code. We discuss the quality

of the inferred locks and how they can be further improved.

Finally we present concluding remarks in Chapter 5. Appendix A contains the detailed

proofs from Chapter 3, whereas Appendix B lists the source code for the Isabelle/Proof-

General proof from Chapter 4.



Chapter 2

Background

This chapter gives background that is common to lock checking (�3) and lock inference

(�4). We will defer discussion of existing work that is speci�c to lock checking and

lock inference to the appropriate later chapter. We discuss encapsulation, modularity,

information hiding, locks, locking discipline, and atomicity. We advocate the importance

of these concepts to motivate their further exploration and development.

2.1 The Joy of Sequential Programming

Programming single-threaded software is comparatively easy. Through the evolution of

programming languages and methodologies, many programmers can now work together

and create large software systems. Of critical importance to supporting this power is the

encapsulation of program behaviour within abstract objects and operations, together with

the ability to intuitively compose such abstractions to create higher level abstractions. In

this section we will study this phenomenon.

For example, although variables are fundamentally limited to primitive types such as

integer, one can compose these primitives types into structures, and continue composing

such structures inde�nitely to create arbitrarily high-level types. Such types can often be

manipulated opaquely � without needing to know their internal layout. Equally, although

21
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fundamental program behaviour is limited to simple assembly instructions such as ADD

or JMP, one can compose these operations into functions, and continue composing such

functions to create arbitrarily high-level operations. Such operations can be invoked

opaquely � without needing to know how their behaviour is internally implemented. In

many ways, the act of programming is fundamentally an act of composition � creating new

functionality by de�ning high-level abstractions in terms of more primitive components.

The ease of programming is heavily a�ected by the complexity of the system being

developed. As software grows, and the number of potential interactions between di�erent

aspects of the software increases exponentially, it is easy for complexity to get out of hand

and slow down development. The value of encapsulation is that it keeps the complexity

under control. Using encapsulation, we can create high-level compositions that are simple

to compose further, despite being internally complex. We do this by hiding internal state

and presenting just a simple interface. By hiding internal state, we guarantee no inter-

ference from unrelated parts of the software, thus getting back control of complexity. In

principle this allows us to compose inde�nitely, creating arbitrarily complex functionality

while keeping the code at a manageable level of complexity.

For example, consider a Set object that encapsulates its internal representation but

exposes the operations insert and delete. Let us consider this a low-level abstraction,

and use it to create something more high-level. Consider a computer game where players

are divided between teams red and blue. Players are allowed to change teams to keep

the game balanced. The system might have an object TeamManager that represents the

teams and exports the operations getRedTeam, getBlueTeam, and switchPlayerTeam.

The implementations of the �rst two operations each return a reference to the respective

underlying Set, whereas switchPlayerTeam inserts the speci�ed player into its new team

and then deletes it from its old team.

It would be reasonable to base the design of the rest of the system on the assumption

that a player is in exactly one team. Note that although switchPlayerTeam breaks this
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invariant temporarily (when the player is in both teams), it is restored by the time the

operation completes. The programmers developing the rest of the system do not need

to know how the switchPlayerTeam operation is implemented internally i.e., they do

not need to know that the invariant is ever broken. Dividing the code into modules

and encapsulating module implementations has empowered these programmers with the

ability to reason locally about the system. Not only can they write correct code without

having to research the precise behaviour of switchPlayerTeam, but the code they write

is robust to changes to that implementation. One such change could be to reverse the

order of the Set operations, i.e., deleting, then inserting the player. This would cause a

di�erent temporary state where the player is in neither team, but the rest of the system

will be oblivious and behave correctly.

A key factor that contributes to the e�ectiveness of modularity and encapsulation is

that the code implementing the rest of the system is executed before or after, but never

during the execution of switchPlayerTeam. Thus the intermediate state of the system

during the execution of switchPlayerTeam can be as broken as required, e.g., allowing

the player to be in both teams at once, or in no team at all. The intermediate state

will be hidden: The rest of the system will not be allowed to observe the state until the

operation has �nished, whereupon the consistency is restored. Thus the programmers

writing the rest of the system do not need to concern themselves with this broken state.

The bene�ts of hiding intermediate state from the rest of the system may seem obvious,

and probably many programmers take it for granted. However, we will now see that

when we introduce concurrency, the whole situation falls apart. Traditional notions of

encapsulation and modularity only hide intermediate states from other operations by the

same thread. They do not hide intermediate states from other threads. Therefore even

in the presence of good software engineering practice, we no longer have the desirable

properties that make working on large systems tractable. Suddenly, the correctness of a

given part of the system depends on intimate implementation details of every other part of
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the system. If conventional modularity and encapsulation is not su�cient, perhaps we can

add something new; something that will hide our intermediate state from other threads

as well. This thesis is about how we can implement programming language features that

allow us to keep the bene�ts of modularity and encapsulation even when we move to a

multi-threaded system.

2.2 Parallel Paralysis

If we have multiple threads of execution in our red/blue teams example (�2.1), we have

to consider the possibility that one thread will be executing switchPlayerTeam while

another thread is examining the contents of the team sets. Now the second thread can

observe the intermediate state of switchPlayerTeam i.e., observe that a player is in both

teams. This is called interference. It is an unwanted thread-to-thread interaction that

completely bypasses our careful use of modularity and encapsulation.

One solution is to write the rest of the system such that it is robust against interference.

For instance, the system could detect if a player is in both teams, and assume it is in

the red team. So the intimate implementation details of switchPlayerTeam force the

whole of the rest of the system to be aware that a player can sometimes be in two teams

at once. This means the code becomes more complicated, and the programmer needs

complete system knowledge to write correct code. It also means the implementation of

switchPlayerTeam cannot be changed, e.g., to delete the player from its current team

�rst, thus leaving a state where a player is in neither team, without the rest of the system

needing to be updated to re�ect this change. When multiple programmers work together

on large software systems, this is not feasible.

The interference described above is just one problem that may occur. The presence

of another thread invalidates many of the assumptions that make writing single-threaded

programs more tractable. Suddenly it becomes very di�cult to write programs at all, since

we have to be careful that any intermediate state used by an operation is not hazardous
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to some other thread. We also must be careful that any state we have recently observed

has not been changed by some other thread since we observed it. Programming in these

conditions is possible, using tricks like the solution in the above paragraph. Lock-free

[23, 64, 83] and wait-free [45] algorithms depend heavily on such tricks to allow threads

to operate on the same shared memory. These algorithms are often used in specialist

situations, because they usually have exceptional performance, but they are not easy to

write and they are hard to scale [81]. For the typical software engineer working on a large

project without full knowledge of the system, an easier solution is to restrict execution

so that we can get back some typically single-threaded guarantees about the state of the

system.

2.3 Locking The State Away

Locks [57, 70] are a programming language primitive that allow us to restrict parallel

execution in convenient way. Like a tra�c light, the idea is to prevent some thread from

proceeding past some critical point in the program until it is safe to do so. It does not

matter whether the implementation of this idea involves the thread in question being

unscheduled by the operating system, looping on the spot, or even continuing with a

benign execution1. The e�ect is that the useful activity of a thread is suspended until

the system, i.e., every thread, is ready for it to proceed.

Threads are suspended both to prevent them invalidating an assumption held by

some other thread in the system, and also to prevent them from executing when their

own assumptions are invalidated. Thus each thread is synchronised with all the other

threads: Threads are not allowed to observe each others' intermediate states, but as long

as they do unrelated work, they may proceed in parallel.

To achieve such synchronisation with locks, the language o�ers primitives to create a

lock2, acquire a lock, or release a lock [38, 52]. If a thread tries to acquire a lock that

1For example, it does something else in the mean time, or it computes a result that is then discarded
2Programs written in languages without garbage collection also need code to destroy locks.
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has already been acquired by another thread, it is suspended until the lock is released.

Locks are dynamic, their number is unbounded and can vary at run-time. However, each

code block that is wrapped in an acquire/release of a particular lock instance can assume

that other threads will not be executing code wrapped in an acquire/release of the same

lock instance. Implementations that break the state can prevent the execution of any

other code that cares about such breakage, and vice versa. Usually the programmer will

associate a lock with each instance of the data structure holding the state in question.

Before working with the data structure, code can get a reference to the lock and acquire

it, releasing it when the work is done. Since the threads exclude each other's access to

the data structure instance, this is called mutual exclusion, and the locks are often called

mutual exclusion locks, or just mutexes. Locks allow us to extend the traditional notion

of encapsulation to a multi-threaded context, because they hide the intermediate state

from other threads.

In the case where a thread acquires the same lock twice without �rst releasing it, we

will assume locks are reentrant, and the second acquire will have no e�ect other than

to increase the number of releases required before the lock is available to other threads.

Reentrant locks can thus be nested arbitrarily, but still provide mutual exclusion at the

level of the outermost nest.

In simple situations, locks work well. Until now we have not discussed the implemen-

tation of the Set class used in the red/blue team example (�2.1). Unless the language

provides sets as primitive types, they must be implemented in terms of more basic ab-

stractions. For simplicity, let us assume that Set is implemented as in �g. 2.1. Note the

type Lock and the variable l, which holds the lock instance, the keyword lock, which

acquires its lock parameter, and the keyword unlock which releases its lock parameter.

Without the locking code, interference is possible. Despite the fact that the Set

implementation is modular and the details of its operations are encapsulated behind the

insert and delete methods, two concurrent insert operations may result in a Set
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class Set {

protected final Lock l = new Lock();

protected ArrayList list = new ArrayList();

public void insert (Object o) {

lock(l);

if (!list.contains(o)) list.add(o);

unlock(l);

}

public void delete (Object o) {

lock(l);

int index = list.indexOf(o);

if (index!=-1) list.remove(index);

unlock(l);

}

public boolean contains (Object o) {

lock(l);

int index = list.indexOf(o);

unlock(l);

return index!=-1;

}

}

Figure 2.1: Example set implementation using locks for synchronisation

containing a duplicate item that needs two calls to delete before it is fully removed.

Two concurrent delete calls can result in the wrong element being removed from the

Set as well as the correct one. Calling delete and insert concurrently can result in

the wrong element being deleted. Other combinations are also possible. This example

supports our earlier claim, that the number of possible interactions between di�erent

aspects of the code grows much faster than the program itself grows. However, due to the

mechanisms discussed, using locks in the manner shown eliminates all of these possibilities

and successfully hides the internal details of all the operations. The Set as presented is

thus called thread-safe.

Let us review the cost, bene�ts, and risks of using locks to make classes thread-safe.

The amount of code has increased but the new lines are idiomatic, so the cost is minimal.

There is some additional state at run-time, but locks tend to be very small (often just

one machine word) so this is usually negligible. There is also overhead in the lock and
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unlock operations but this is also quite small [7].

Using locks has successfully solved the multi-threaded problem for this class, but

there are hazards that must be avoided. These are the mistakes we could have made in

Set: Firstly, we could have forgotten to insert one or more lock acquisitions or releases.

There are many problems that can be caused by this. Releasing a lock without �rst

taking it usually raises an exception with most lock implementations, but forgetting to

release a lock is more serious, as it prevents further lock acquisitions and causes the

system to deadlock. This can usually be debugged by examining the state of the system

to �nd out which lock is causing the problem, and tracking the operations on that lock.

Languages like C++3 and Java even have lexically scoped locks that ensure lock and

unlock operations are always balanced.

Forgetting, or more likely not recognising the need for, both the lock acquisition and

release operations is a more common problem, and of course will allow the aforementioned

interference to occur. Debugging such situations is hard because interference tends to

cause symptoms that do not directly imply their cause. Even if lock acquisitions and

releases are correctly inserted, there is always the danger that the wrong lock might be

used. In which case the synchronisation will not a�ect the right threads at the right time,

and the hard-to-debug interference will creep back into the system.

So far, the application of locks to solve concurrency problems has been idiomatic. Let

us now see if we can use locks to solve the concurrency issues with switchPlayerTeam.

The code in �g. 2.2 attempts to use locks in a similar manner to �g. 2.1 to make the class

thread-safe. While this will prevent two switchPlayerTeam calls from executing simulta-

neously, there is an additional problem, one which we did not face with Set. Because the

rest of the code can acquire references to the Set objects through the getRed and getBlue

methods, it is possible for them to access the sets without the TeamManager lock and thus

encounter a state where a player is in both teams. Although examining a Set causes a

lock to be acquired, this is a di�erent lock to the lock acquired in switchPlayerTeam.

3For example, with boost::recursive_mutex::scoped_lock [6].
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class TeamManager {

protected final Lock l = new Lock();

protected final Set red = new Set();

protected final Set blue = new Set();

public Set getRed () { return red; }

public Set getBlue () { return blue; }

public void switchPlayerTeam (Player player, Set from, Set to) {

lock(l);

from.delete(player);

to.insert(player);

unlock(l);

}

}

Figure 2.2: Fragment of code showing an incorrect attempt at synchronisation

Locking l within the two getter methods will not help, since the lock will be released

before the sets are examined.

Clearly we lack synchronisation, so let us try inserting locking code wherever else in

the system the sets are accessed. Taking the TeamManager's lock would su�ce, but we

would need to export the lock instance from the class via some kind of public getLock

method so that the rest of the system can acquire/release it. This means we need to

remember which team manager the Set is associated with, and this may not be possible

if we pass the Set to some library that is not aware of the TeamManager class. It is not

good for modularity if code that uses the Set object to have to obey some discipline

involving the unrelated TeamManager object. Another solution is to move all the set-

using code into the TeamManager, and avoid references to the sets escaping into other

parts of the system. However, this may hurt modularity, by having too much code in the

TeamManager class.

A �nal solution is to abandon the TeamManager lock and exclusively use the Set locks

for synchronisation. This means that the locking internal to Set is su�cient for the basic

insert, delete, and contains operations. However, the switchPlayerTeam method becomes

more complicated, as we have to acquire both teams' locks. Figure 2.3 assumes that the
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public void switchPlayerTeam (Player player, Set from, Set to) {

lock(from.getLock());

lock(to.getLock());

from.delete(player);

to.insert(player);

unlock(from.getLock());

unlock(to.getLock());

}

Figure 2.3: Fragment of code showing another incorrect attempt at synchronisation

Set class provides access to its internal lock with a getLockmethod. This implementation

shows some promise, as the locks should exclude any code that touches one of the Set

objects. However, there is a more serious problem lurking in this design.

As we have discussed, threads acquire and release various locks as they execute. At

any time, a lock will be acquired by at most one thread. Also, when acquiring a lock

that is currently acquired by another thread, a thread must �rst wait for it to be re-

leased. A thread can therefore be waiting for another thread. The other thread may

be waiting for a further thread, and so on. If this chain forms a wait cycle then all the

threads in the cycle will wait for each other and the system will stop functioning. This

is another form of deadlock, and it can happen with the code in �g. 2.3: Consider two

players, a and b, and two threads concurrently calling switchPlayerTeam(a,red,blue)

and switchPlayerTeam(b,blue,red) on the same TeamManager instance. It is possible

for both threads to have acquired the lock on the �rst line, but be unable to execute the

second line because they are waiting for each other.

In order to control such situations, the programmer needs to be careful about the order

in which locks are acquired. If both threads had acquired the red team Set's lock �rst,

there would have been no deadlock. However, this is not easy to achieve. When we write

the code, we do not know what sets will be referenced by the from and to parameters, so

we do not know in what order we should place the �rst two lines of switchPlayerTeam.

In this case we could decide at run-time by comparing from and to using some global
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public void someMethod () {

lock (red.getLock());

switchPlayerTeam(player,blue,red);

unlock(red.getLock());

}

Figure 2.4: External synchronisation for avoiding deadlock

public void swapPlayers () {

lock (red.getLock());

lock (blue.getLock());

switchPlayerTeam(player1,blue,red);

switchPlayerTeam(player2,red,blue);

unlock(blue.getLock());

unlock(red.getLock());

}

Figure 2.5: External synchronisation for avoiding interference

ordering e.g., the address of the structures in memory. However, there may be other

constraints on the ordering of locks, e.g., the second Set may have been contained within

the �rst Set. In such a case it would be necessary to lock the outer Set �rst, in order to

safely extract the inner Set.

A �nal option is to acquire the locks externally from switchPlayerTeam in the second

thread, where the order within switchPlayerTeam is blue followed by red. Suppose the

second thread executes someMethod from �g. 2.4. We have added code to lock the red

team outside of the call to switchPlayerTeam. Since the lock is reentrant, this e�ectively

disables the red team's lock acquire within the switchPlayerTeam and the e�ective lock

order becomes red, followed by blue. Now both threads are taking the locks in the same

order, and no deadlock occurs.

Consider �g. 2.5, which swaps the teams of a pair of players, keeping the teams bal-

anced. Without synchronisation, other threads could see a state where both players were

on the red team, which would clearly be unbalanced and unfair. This method is composed

of two calls to switchPlayerTeam, but the synchronisation within switchPlayerTeam is
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not su�cient to stop the intermediate state between the two calls from being visible.

Hence we have added more synchronisation externally, being careful to keep the red and

blue order consistent with the rest of the program.

In both cases, we have required unrelated code to know the implementation details of

switchPlayerTeam. Although locks have helped us encapsulate the intermediate states

of our operations, we cannot encapsulate the locks themselves. This presents a software

engineering problem.

We have introduced locks as a means of preventing interference. In some cases they

work well. However, for the switchPlayerTeam implementation there were a number of

subtleties that needed to be overcome. It is interesting to discuss the software engineering

cost of these workarounds. Most of the solutions involved doing something external to the

switchPlayerTeam implementation. Sometimes this was a reasonable requirement, like

locking Set objects wherever they are accessed. On the other hand, the solution to avoid

deadlock in �g. 2.3, by taking the red lock external to switchPlayerTeam, exposed the

fact that switchPlayerTeam accessed the red and blue team sets. If we were to modify

switchPlayerTeam so that it accessed the Player, we would have to adjust the rest of the

program to take into account any additional lock acquisitions, to ensure the lock order is

globally consistent.

Similarly, to avoid interference in �g. 2.5 we rely on the fact that switchPlayerTeam

only accesses the red and blue team. If it were changed to also access the Player object,

we would have to acquire the Player's lock for the duration of the two calls. Otherwise,

other threads that happen to access the Player object will be able to see intermediate

state between the two calls to switchPlayerTeam where the Player lock is released. Thus

we lose the bene�ts of encapsulation, the code is less robust, and scaling up the software

becomes intractable.

Locks initially showed great promise. They were able to provide encapsulation of

state for multi-threaded programs by synchronising threads. However, they eventually
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betrayed us, because details of the locks themselves leaked out of the code into higher

levels of abstraction. This unfortunately causes almost as much of a problem as the

concurrency issues they are meant to solve.

2.4 Declarative Multi-Threaded Encapsulation

Previously, we have been treating locks as a mechanism. We have identi�ed potential

interference and used locks in ad-hoc ways to eliminate that interference. We have not

discussed policy. If locks allow the extension of encapsulation to concurrency, by hiding

state from other threads, we would like to reason about this directly, at the higher level

of program design at which encapsulation is usually discussed. We would like a more

declarative concept that we can use to express the encapsulation that we want instead of

thinking about how to use locks to get it.

Atomicity (�1) is exactly the declarative concept we need. If a block of code is atomic

then other threads cannot observe the intermediate states that arise during the execution

of the block. Using atomicity, programmers can at least express the encapsulation they

need, without worrying about all the details that achieving this atomicity might involve.

Atomicity has already received positive attention from programmers [82]. So far, encap-

sulation boundaries have coincided with function boundaries, but this is only because

our examples have been deliberately simple. Functions are often used for implementing

encapsulation, but they are also have other uses, such as factoring out duplicate code,

implementing callback structures, and for splitting up code to avoid excessive indentation.

Atomicity seems to have a more speci�c utility: It just provides encapsulation. Addition-

ally, even if a function body is a sensible unit of encapsulation, if it is only called from

one place within the same class, a programmer may decide to inline it to keep the code

simple. For these reasons, it seems that considering atomicity as a property of arbitrary

blocks of code is more sensible than restricting our attention to just function bodies.

Often, the location of encapsulation boundaries is idiomatic, e.g., the operations of
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concurrent data structures. However in general, even for single-threaded programming,

choosing what and where to encapsulate is one of the most di�cult and important aspects

of software engineering. Encapsulation is something about which programmers are already

aware, and so we suggest that programmers are already mentally prepared for using

atomicity as an encapsulation tool when writing multi-threaded software.

Figure 2.6 shows where the encapsulation boundaries belong in the earlier examples

(�2.3). We have omitted any mechanisms that might be used to implement the atomicity,

the given code is just a speci�cation. Atomicity is particularly suited to composition. If

a block is atomic, this covers all the state and code within the block, down to the most

fundamental machine operations. In the switchPlayerTeam method we need to compose

the two set operations into one operation, and this operation should be atomic. By simply

marking the block we need to be atomic, we can easily express this. The di�culties we

had in the previous section are thus only due to getting the locking mechanisms to do

what we want, they are not fundamental to the activity of concurrent programming.

2.5 A Generalised Lock Discipline

There are general disciplines that, if globally adhered to, can tell us where to insert locks

to achieve atomicity. We focus on one particular discipline, two-phase locking [29], as

it is simple and general-purpose. These are the rules a programmer must follow when

applying the two-phase locking discipline to achieve atomicity:

1. One must identify the objects in the system that are thread-local, and those that

are shared, i.e., accessed by more than one thread. Objects are either thread-local

or shared.

2. One must choose a lock to protect each shared object. The same lock can be used

to protect more than one object. The lock must exist throughout the lifetime of the

objects it protects.
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class Set {

protected ArrayList list = new ArrayList();

public void insert (Object o) {

atomic {

if (!list.contains(o)) list.add(o);

}

}

public void delete (Object o) {

atomic {

int index = list.indexOf(o);

if (index!=-1) list.remove(index);

}

}

public boolean contains (Object o) {

atomic {

int index = list.indexOf(o);

return index!=-1;

}

}

}

class TeamManager {

// ...

public void switchPlayerTeam (Player player, Set from, Set to) {

atomic {

from.delete(player);

to.insert(player);

}

}

}

class SomeClass {

// ...

public void swapPlayers () {

atomic {

switchPlayerTeam(player,blue,red);

switchPlayerTeam(player,red,blue);

}

}

}

Figure 2.6: Using the atomic annotation to specify the encapsulation we need.
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3. One must decide what blocks of code should be atomic.

4. For each such block of code, one must determine the shared objects that are accessed

by the block and by any methods it calls (including any late binding). An object

access consists of a read or write of a non-�nal �eld of the object. The locks that

protect these objects must be held whilst the accesses occur.

5. All the acquisitions must precede all the releases in the block. This is the origin

of the name two-phase. The block can be divided into an acquisition phase and a

release phase.

6. The order of lock acquisitions must obey some global order to avoid deadlocks as

described in (�2.3).

Just as disciplined programming can help avoid some of the pitfalls of dynamic memory

management, using a locking discipline can help avoid race conditions and deadlocks.

Although it can be proven that programs successfully applying this discipline are free

from interference and deadlocks, it is still very easy to make mistakes when applying the

discipline and thus still su�er these problems. This motivates both lock checking and lock

inference.

Although there are other ways that locking can be used to implement atomicity, such

as hand-over-hand locking [57], we assert that these can only be correctly applied in

very special circumstances. For example, hand-over-hand locking, which can be used

to traverse an object graph in a thread-safe manner while allowing other traversals in

parallel, is not correct unless all concurrent traversals proceed through the objects in the

same order. We consider specialist synchronisation to be too low-level to be a useful

abstraction for domain experts, best left to the design of speci�c high-performance data

structures such as Java's concurrent collections.

Having said this, there is still a lot of �exibility within the two-phase method. For

example, the programmer can choose which subset of objects should be shared between
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threads, and can also choose the guarding structure i.e., choose which locks should guard

each object. This makes it applicable in a wide range of situations.

2.6 Granularity

The relationship between locks and data is �exible, and is characterised with the notion

of granularity [39]. One can associate either many or few objects with each lock. The

advantage of protecting few objects with each lock is that when this lock is acquired,

fewer threads are excluded. Thus, �ne granularity promotes more parallelism. However,

this means that more locks may need to be taken to ensure atomicity for a given set of

accesses, i.e., a given block of code. At the other end of the scale, is the use of one lock

for all objects, in which case only this single lock needs to be taken to ensure atomicity

for any block of code, but the chance of blocking an unrelated thread is much higher.

This is the most coarse granularity possible.

When the number of locks is not bounded by the size of the program, e.g., when

each object has a single lock that protects its �elds, we say that that instance locks are

used. Alternatively, if the number of locks can be bound by the size of the program, e.g.,

associating locks with syntactic entities such as classes or construction sites in the code,

we call these static locks. Using a single global lock for all objects is another example of

static locks.

Static locks are usually coarser than instance locks and allow less parallelism. On the

other hand, their bounded nature makes it easier to support them in static type systems

and program analyses.

Even with instance locks, the granularity can be adjusted to reduce the number of

locks that need to be taken. Many static tools need to conservatively abstract the set

of objects accessed when analysing an iteration over an object structure. They usually

achieve this by requiring all the objects touched to be guarded by the same lock, thus

avoiding undecidability problems with lists and other unbounded object structures that
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are extremely common in object-oriented programming.

In order to mitigate the lost parallelism, when tools require a coarser granularity,

multi-granularity locks can be used. The idea is that a coarse granularity is used for loops

and other places in the code where an approximation needs to be made, but elsewhere

in the code, a �ne granularity can be used. Typically locks are created as members of a

group of locks. Individual locks can be acquired and released as normal, but there are

additional operations for locking the entire group. This is usually implemented with a

centralised counter, rather than naively iterating over the entire group [39].

2.7 Deadlock Detection

The term deadlock is used for a variety of states. It is generally applied to a system that

has stopped making useful progress because of some adverse condition. For instance,

when we �rst spoke of deadlock (�2.2), it was caused by forgetting to release a lock. This

kind of error can easily be prevented, e.g., with lexically scoped locks as seen in Java and

C++. Here, we are more interested in the deadlock that occurs when locks form a cycle.

Consider two threads that have each acquired a di�erent lock, but are now both blocked

trying to acquire the other thread's lock. Henceforth when we refer to deadlock, we are

referring only to this cyclic lock problem.

We �rst considered deadlock as a bug that must be avoided by the programmer (�2.2).

However when the system gets into such a state, it is possible to detect by searching for

a cycle in the waits-for graph formed by threads, locks, and lock acquisitions. This is

�rstly useful as a debugging aid. When deadlock occurs, one can pause the program and

run a tool that scans the waits-for graph and reports any cycles. The programmer then

has enough information to tackle the cause of the problem. The Java Hotspot virtual

machine has this feature [65]. Because a lock implementation will usually store the set of

threads waiting on a lock, so that one of them can be woken upon the lock's release, the

waits-for graph is implicitly present in the program state and just needs to be traversed.
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In later chapters, we will want something more from deadlock detection. We will

essentially want lock acquisition to fail (dynamically) when it would cause a deadlock.

This is a harder problem because we do not want to negatively a�ect performance in

the (common) non-deadlocking case. Locks are sometimes used in very tight loops so

we have very little room for overhead. We need to scan for a cycle on every failed lock

acquisition. If there are the same or fewer active threads than the number of CPUs,

this extra computation would occur on hardware that would otherwise be idle. However,

electricity would still be wasted and it is not uncommon to have more threads than CPUs

when designing a system to work on di�erent architectures with di�erent numbers of

CPUs.

Another solution is to use timeouts when acquiring locks [56]. This often reports false

deadlocks in the case where locks are held by another thread for a long time, and one has

to wait for the timeout before getting a result. The timeouts have to be carefully chosen

to match the application and the hardware running it. Luckily, there is an alternative

solution in the form of Dreadlocks [56]. Dreadlocks work by storing the set of waits-for

threads in each lock. This is called a digest. Initially the digest is empty but in the time

spent waiting for another thread to release its lock, the digest accumulates more threads

until it discovers itself, at which point the deadlock status is reported. The representation

is more compact and easier to interpret than a waits-for graph, and the various threads

co-operate to distribute the information around the graph.

Further performance improvements come from the representation of the digest (a set).

For small numbers of threads a bit �eld can be used, but even for large numbers one can

use a Bloom Filter [9], a conservative approximation of a set that uses hashes. When

using a Bloom �lter, hash collisions can mean that the set appears to contain elements

that were not put into it, which will manifest as false deadlocks. However, for many

applications this is acceptable as the false positives are rare and only result in a tiny loss

of performance that is more than outweighed by the bene�ts of using a more e�cient set
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representation.

2.8 Chapter Summary

We can get a good understanding of the software engineering cost of adding locks to a

program by considering the cost of applying the two phase discipline discussed in the last

section (�2.5)

• When determining the shared objects accessed by the operation in question, one has

to look deep into the methods called by the operation. For swapPlayers (�g. 2.5)

this means studying the implementation of TeamManager and even Set to see what

objects they access. When combined with inheritance, this becomes very di�cult

since we are not able to extend classes and override methods without changing

the code everywhere the overridden method may be called. It also clearly breaks

encapsulation since the set of objects accessed by a method depends on how the

method is implemented.

• When avoiding deadlocks, we must know what locks are acquired by any methods

called by the operation in question, so that we can make sure that we keep the

acquisitions consistent with the global ordering. For example in �g. 2.3 we had

to acquire the red team's lock external to switchPlayerTeam in order to prevent

a possible deadlock. When we add late binding, the problems are compounded.

Again, this breaks encapsulation since the locks internal to a method are part of its

implementation, and should be liable to change without notice.

For simple examples such as the Set class, where we wanted to encapsulate the internal

intermediate states, locks worked well. However when we wanted to build more compli-

cated systems formed by composing simpler abstractions, we ran into several problems

when using locks. Although we can use locks to encapsulate the internal intermediate

states, we have to break encapsulation to do so. This makes locks hard to use in a large
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program. When we also consider the unforgiving errors we get when locks are incorrectly

applied, it is clear that programmers face serious challenges using locks in large projects.

In this chapter we showed how encapsulation has helped us scale up our software. We

also showed how multi-threaded code can often violate this encapsulation. We showed

how locks can be used to solve this problem, but correctly applying them often requires

the breaking of encapsulation in di�erent ways. We suggested that the fundamental

property in which programmers should be interested is atomicity. We showed how locks

can be used to implement atomicity, and went into detail about some of the techniques

and trade-o�s that can be helpful when doing so.

We conclude by suggesting that imperative programmers fear taking advantage of

parallel hardware because locks introduce signi�cant new software engineering problems.

Programming concurrency with lower level constructs is even harder [81]. Mistakes lead

to deadlocks or interference. Both are hard to debug since good test coverage is di�cult

when threads interleave non-deterministically. In the rest of this thesis we will give lock

checking and lock inference techniques that are designed to mitigate these problems as

much as possible.
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Lock Checking

3.1 Introduction

A race condition, or more concisely, just a race, is a kind of interference that can occur

in concurrent programs when two threads are not properly synchronised, and thus can

simultaneously access the same object. We saw an example of this in (�2.2) when two

threads simultaneously accessed the same Set object. This can then lead to corruption

of data structures, and eventual software failure. To date, many well-known pieces of

software have fallen foul of race conditions, often long after their initial development,

sometimes leading to denial-of-service attacks or other security problems [48, 79, 4, 54,

62, 21]. Programmers typically attempt to avoid race conditions through disciplined

programming [57].

We give a type system that eliminates races by enforcing a particular locking discipline.

We would like also to enforce atomicity, but a block of code has to be race-free before it

can be atomic. Later, we will extend the race safety type system so that it can also enforce

the atomicity of blocks marked as atomic in the code. This is a small extension that adds

some simple restrictions on the nesting of sync blocks. Even without this extension the

system is still useful because just knowing that a program is race-free is helpful for a

programmer. The programmer can then manually impose additional disciplines to get

42
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atomicity.

For race safety, we simply require object accesses to occur within a synchronised block

of an appropriate lock. For simplicity, we assume all objects are shared. Each object is

thus guarded by a lock. For storage purposes, locks are associated within objects (not

necessarily the object they protect) so the guarded-by relationship is an object-object

relationship. We use instance locks, so the number of locks is statically unbounded, and

the guarded by relationship is challenging to reason about statically. Ownership type

systems face a similar problem � to statically reason about object-object relationships as

noted by Boyapati et al. [12]. As brie�y discussed earlier (�1.1), we use universe types

to solve this problem. The programmer inserts universe annotations into their code, and

also inserts sync blocks. These are then together checked for mutual consistency.

3.2 An Example of Universe Types and Race Safety

The run-time state of an object-oriented program consists of a graph of objects linked by

�eld references. In an ownership system, each object is owned by another object. The

owner of an object does not change during the object's lifetime. The ownership relation

describes a tree structure whose root is null. This tree structure can be used to represent

the encapsulation inherent in the design of a program [14, 72]. As such, it can also be

used to represent the locking discipline used.

In a universe type system, reference types consist of a class and a keyword that

indicates the topological relationship. We call the keyword an ownership type quali�er ;

it is one of rep, peer, and any.

When universe types are used in a program, they only have meaning when considered

relative to some observer object. For �eld type annotations, the observer is the object

containing the �eld. For method parameter and local variable annotations, the observer is

the receiver of the method. When the observer has the same owner as a particular object,

the object is a peer of that observer. If instead, the observer is the owner of the object,
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the object is a rep of that observer. Any object can be any, regardless of its observer.

Thus any gives no information about ownership, which forms a sub-type relation that we

will formalise shortly. In earlier work [67], any was called readonly since �eld assignments

through such references were not allowed. We do not impose this restriction.

We now return to our earlier example (�g. 1.1) in more detail. For convenience, we

reproduce it in �g. 3.1. Each object has an address, e.g., (1), and a class name, e.g.,

Dept. Owned objects are drawn in the box of their owners; the tree is represented by

the nesting of the boxes, (1) owns (2− 5), and (8) owns (9− 11). From observer (1), (3)

has type rep Student1, but from observer (2), the (3) has type peer Student. Thus, the

type of (3) is relative to the observer. Also, from observer (8) the object (3) has type any

Student, and the object (1) has type peer Dept2.

The source code shows the universe type annotations being used in a program. The

program is about students who live in halls of residences and who belong to departments.

There is no correlation between the department a student is in, and their hall. An

execution of this code could give rise to the heap in the diagram. For example, class

Dept has �eld first of type rep DeptStudentNode, which, in the diagram corresponds

to the reference from (1) to (2). On the other hand, HallStudentNode has �eld s of type

any Student, which, in the diagram corresponds to the reference from (9) to (3). Thus,

through any, students (owned by their respective departments), can be accessed also from

a separate domain, namely their halls of residence.

We now discuss the use of the tree-hierarchy imposed by the universe types to avoid

races: We require that the run-time system records the owner of an object (which does

not change). We associate a lock with each object, with objects guarded by their owner's

lock rather than their own. Any accesses to a �eld of an object, for example e′.f or

e′.f = ..., must be within a sync e block where e evaluates to a peer of e′. This is in

contrast to Java's synchronized, which just locks e and not all of its peers. One can also

1It trivially also has type any Student.
2The reference from (8) to (3) is illegal in systems enforcing owners-as-dominators [14, 72] but is legal

in universe types, which, instead, enforce owners-as-modi�ers.
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1 class Student {

2 int mark;

3 boolean roomClean

4 }

5
6 class Dept {

7 rep DeptStudentNode first;

8 void releaseMarks () { ... }

9 }

10
11 class DeptStudentNode { // Closed list

12 peer Student s;

13 peer DeptStudentNode next;

14 }

15
16 class Hall {

17 rep HallStudentNode first;

18 void cleanRooms () { ... }

19 }

20
21 class HallStudentNode { // Open list

22 any Student s;

23 peer HallStudentNode next;

24 }

25
26 void releaseMarks () {

27 sync (this) {

28 rep DeptStudentNode i = this.first;

29 sync (i) {

30 while (i!=null) {

31 i.s.mark = ...;

32 i = i.next;

33 } } } }

34
35 void cleanRooms () {

36 sync (this) {

37 rep HallStudentNode i = this.first;

38 sync (i) {

39 while (i!=null) {

40 sync (i.s) {

41 i.s.roomClean = true;

42 }

43 i = i.next;

44 } } } }

(1)    Dept

(5)     Student

(3)     Student(2)    DeptStudentNode

(4)    DeptStudentNode

(8)    Hall

(9)     HallStudentNode

(10)    HallStudentNode

(11)    HallStudentNode

(7)     Student

. . .

(6)    Dept

Figure 3.1: Example program showing heap hierarchy structure
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think of sync e as locking the object owning e. We propose that our semantics of sync

should replace synchronized. Nested boxes are disjoint; code that accesses both must

take both locks.

Consider the body of releaseMarks. Since we are adhering to the above rule, the

�eld access of this.first (line 28) is enclosed within sync (this) (line 27). More

interesting is the body of the while loop, where a statically unknown number of �eld

accesses through i.next (line 32) is correctly synchronised by acquiring a single lock,

sync (i), before the loop (line 29). Even though i will point to di�erent objects at each

iteration, the synchronisation is correct, because the �eld next is peer and thus the type

system ensures all these objects will have the same owner. The same is true when we

access the student (line 31).

We needed to tackle the challenge of avoiding races when the owner of the accessed

object is unknown, i.e., when the object has type any C for some class C. (Note that the

owner is only statically veri�able when the ownership type quali�er is not any.) In such

a case, any accesses of the form p.f or p.f = ..., where p must be a path3, must be within

a sync p block, and the block may not assign to any of the �elds appearing in p. This

ensures that the object locked is the same as the object accessed, and thus the owners

are trivially the same.

The di�erence between the body of cleanRooms in �g. 3.1 and releaseMarks is that

in the former, HallStudentNode has an any pointer to Student. Thus, the student is

not necessarily a peer of the node i; therefore, when we access i.s (line 41) the sync

(i) (line 38) is no longer su�cient. We must lock the owner of the student i.s and this

is possible through the �fresh� sync (i.s) (line 40) even though i.s is any. We must

be sure however that the body of the sync (i.s) block does not write to the �eld s,

otherwise the type system would reject our program.

Note that in releaseMarks, students will receive their marks atomically (there is

never a state visible where a subset of students have their marks) but this is not the case

3A path is a sequence of �eld accesses starting from a parameter or this.
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for the cleaning of rooms. A student may notice their room has been cleaned whereas

another student's room has not. Recall the earlier de�nitions of open and closed list

(�1.1). In general, we must lock individual elements when iterating through an open list.

This is not necessary for a closed list.

3.3 Related Work

Not all the previous lock checking work uses ownership or guard annotations to specify

the locking discipline as a relationship between objects. Some work [8] uses a �nite set of

programmer-supplied region names, and specifes the locking discipline as a relationship

between objects and regions. This can reduce the annotation burden since regions are

easier to infer than ownership types. However, it has the disadvantage that the set of

locks is �nite, and thus the program does not scale as well to many threads (instance locks

are not possible). It is also possible to detect race conditions through program analysis

using points-to sets, which are similar to regions [68].

Of the work that does use instance locks, the �rst to exclude race conditions from

object-oriented programs using a static type system was formalised using the concurrent

object calculus [30]. This idea was subsequently re�ned to more concrete models of object-

oriented languages [31, 35], which included parameterised classes to allow the instantiation

of data structures with di�erent locking policies. Later, the technique was extended to

also enforce atomicity [36] using the two-phase discipline. There was also a dynamic

approach [32] that checked conformance to the discipline at run-time. The annotation

burden in these systems was signi�cant, so later attempts were made to infer some of

the annotations, �rst for race safety [37] and then for atomicity [34]. These papers

are variations on the same approach: The programmer supplies guard annotations in

their classes; the guard annotations were a form of ownership types; this is supported

through their use of �nal expressions and parameters, although individual �elds were

owned instead of entire objects.
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Similar results were also obtained using ownership types directly [11, 12]. One inter-

esting di�erence in that case was that objects ownership was transitive. The ownership

hierarchy was a forest instead of just a single tree, and individual trees were guarded by a

lock each. Locking an object in our system does not lock the whole tree as in [53, 11, 12].

We lock only the immediate level and further lock acquisitions are required if deeper ob-

jects are accessed. With more locks, we reduce contention and let more threads execute

in parallel.

There is a substantial di�erence between our work and that just discussed; we allow

paths of non-�nal �eld types (in fact our formalism does not have the final type qual-

i�er) whereas the previous work requires paths to be constructed from only �nal �eld

dereferences. The price we pay for forsaking this restriction is that we must �nd another

way to ensure that the meaning of paths is not a�ected by the side-e�ects of the body of

the sync block. For this we use a system of e�ects, and for this to work we require the

e�ect of overriding methods to be restricted to that of the method they override. This

is actually less of a restriction than forcing variables and �elds to be �nal, since that

prevents writing to those �elds anywhere in the code. A combination of our approach

and that of [34, 12] would be less restrictive.

E�ects are also used to prove preservation of properties of ownership type system in

[78]. A concept similar to universes was studied in conjunction with synchronisation in

[53]. This was mainly for the purpose of verifying object invariants rather than absence

of race conditions. Objects can �change hands� over time, therefore their owners are not

constant at run-time. Also, there is no concept of peer.

Another di�erence is our use of any. In [34], an open list (�1.1) of students can be

written if we design the student so that it has a �nal �eld that stores the owner. In

other words, we create a class that can be referenced by a variable whose type does not

specify an owner such as s of HallStudentNode. However, this change is global to the

program so every other reference (e.g., the �eld s of DeptStudentNode) must use the
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// We have to design Student like this:

class Student {

final Object owner;

/* fields guardedby this.owner */

}

// Therefore, the HallStudentNode looks like:

class HallStudentNode<x> {

Student s guardedby x;

HallStudentNode<x> next guardedby x;

}

// Hall locks its students like so:

class Hall<x> { // Open list

HallStudentNode<this> first guardedby x;

void cleanRooms () {

sync (x) { //protects fields of this

HallStudentNode<this> i=this.first;

sync (this) { //protets nodes

while (i) {

final Student s_ = i.s;

sync (s_.owner) {

s_.roomClean = true;

}

i = i.next;

}

}

}

}

}

// But a Student is a Student, so design

// DeptStudentNode in the same manner:

class DeptStudentNode<x> {

Student s guardedby x;

DeptStudentNode<x> next guardedby x;

}

// And thus we have to lock each student

class Dept<x> { // must be open too!

DeptStudentNode<this> first guardedby x;

void releaseMarks () {

sync (x) {

DeptStudentNode<this> i=this.first;

sync (this) {

while (i) {

final Student s_ = i.s;

sync (s_.owner) {

s_.mark = ...;

}

i = i.next;

}

}

}

}

}

// We have to design student like this:

class Student<x> {

/* fields here */

}

// Therefore, HallStudentNode looks like:

class HallStudentNode<x> {

Student<self> s;

HallStudentNode<x> next;

}

// Hall locks its students like so:

class Hall<x> { // Open list

HallStudentNode<this> first;

void cleanRooms () {

sync (x) {

HallStudentNode<this> i=this.first;

sync (this) {

while (i) {

final Student<self> s_=i.s;

sync (s_) {

s_.roomClean = true;

}

i = i.next;

}

}

}

}

}

// Since the students we reference have type

// Student<self>, this field must be the same:

class DeptStudentNode<x> {

Student<self> s;

DeptStudentNode<x> next;

}

// But we do not own the student, so we must

// lock each student individually.

class Dept<x> { // must be open too!

DeptStudentNode<this> first guardedby x;

void releaseMarks () {

sync (x) {

DeptStudentNode<this> i=this.first;

sync (this) {

while (i) {

final Student<self> s_=i.s;

sync (s_) {

s_.mark = ...;

}

i = i.next;

}

}

}

}

}

Figure 3.2: Example code in the systems of Flanagan et al (left) and Boyapati et al (right)
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same type (that does not specify an owner). This means that we cannot make a closed

list of students, because the owner of the student is no longer indicated by its type. The

only solution is to use open lists everywhere, which have the undesirable property that we

cannot lock all the elements of the list at once, we have to acquire the same lock once for

each student. The implication of this is that iterating through the list cannot be atomic

(as in our releaseMarks).

The type system of [12] is even more restrictive, as a closed list implementation can

only contain self-owned objects. This means that objects contained in an open list also

can only be owned by the root. The code for both solutions is given in �g. 3.2.

Our work complements these approaches by discussing a di�erent kind of ownership

type system (universes) and its application to race safety. Although it is interesting to

see how static race safety can be achieved using universes, our major contributions are

increased expressiveness and greater concurrency.

3.4 Formal Preliminaries

In this section we will give the syntax and semantics of our model language. We will also

give our universe type system, which is a prerequisite for the next section, where we will

discuss the actual race safety type system. universe types are introduced in [67], and given

a type theoretic presentation in [16]. We use ideas from [67] but with some di�erences:

We decided that owners-as-modi�ers, while useful for veri�cation, are not needed for type

soundness and race safety. Our type system allows �eld assignments through any objects

as long as the heap remains well-formed. Therefore our type system is more permissive

and could be restricted to also require owners-as-modi�ers.

For sequences, we use the notation e in the style of [51], and sometimes the notation

e1..n, both of which are distinct from the undecorated e. The ith element of e1..n is ei

and of e is e↓i. We use similar notation when we access the ith element of a tuple:

(a, b, c)↓2 = b. We use an underscore _ to represent a variable whose value can be
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M : (Idc × Idm)→ TypeSig MBody : (Idc × Idm)→ SrcExpr
F : (Idc × Idf )→ Type c ∈ Idc f ∈ Idf
≤c ⊆ Idc × Idc

e ∈ SrcExpr ::= this | x | null | new t | e.f | e.f = e | e.m(e)
| (t) e | spawn e | sync e e

t ∈ Type ::= u c
u ∈ Universe ::= rep | peer | any | self

TypeSig ::= t m(t)
Γ ∈ Environment = Type× Type Γ(this) = Γ↓1, Γ(x) = Γ↓2

Figure 3.3: Source program de�nition

arbitrary. To denote that a particular construct, e.g., new c, occurs within an expression

e, we sometimes write new c ∈ e. P is the powerset.

3.4.1 Syntax and Semantics

Programs are de�ned in Fig. 3.3, and consist of the three functions M , MBody , and F ,

which de�ne the method signatures, method bodies, and �eld types of each class in the

program, together with (≤c), which gives the inheritance relationship between classes.

Note that all types t are annotated with an ownership type quali�er u that can be one

of the three keywords rep, any, peer, or self, which is the type of this and thus a

specialisation of peer. It prevents the type system losing type information during local

member access. We use spawn e to start a new thread to execute e, and sync e e′ to

acquire the lock that guards the object e while we execute the expression e′. We give the

run-time syntax in Fig. 3.4 and use a small step semantics.

We de�ne (≤u) as self ≤u peer ≤u any and rep ≤u any. We de�ne the sub-type

relation (≤) as u c ≤ u′ c′ ⇐⇒ u ≤u u′ ∧ c ≤c c′. The program state consists of

the heap h and a sequence of expressions e. It is reduced with respect to a base stack

frame σ according to the rules in �g. 3.5. The (Interleave) rule uses the single-threaded

semantics. The base stack frame contains the value of this and x. Single-threaded

execution steps are decorated with actions, ranged over by β. If a step accesses an address

a, then its action is a, otherwise its action is τ . These actions do not a�ect the execution,
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s ∈ State : RunExpr ×Heap
h ∈ Heap : Addr → Object
Object : (V al × Idc × (Idf → V al)) // owner, class, �elds

a ∈ Addr : N
v, w ∈ V al ::= a | null
σ ∈ Stack ::= (a, v) σ(this) = σ↓1, σ(x) = σ↓2

β ∈ Actions ::= a | τ
e ∈ RunExpr ::= v | this | x | new t | e.f | e.f = e | e.m(e) | (t) e | spawn e

| synce e e | syncede w e | frame σ e
E[·] ::= E[·].f | E[·].f = e | v.f = E[·] | E[·].m(e) | v.m(E[·])

| (t) E[·] | synce E[·] e | syncede w E[·]

Figure 3.4: Run-time state and syntax

σ ` x, h τ
 σ(x), h

(Var)

ei = C[spawn e′]
en+1 = frame Active(σ,C[·]) e′

σ ` e1..n, h
(i,τ)
 e1..i−1 C[null] ei+1..n+1, h

(Spawn)

h, σ ` v : t
σ ` (t) v, h τ

 v, h
(Cast)

σ ` ei, h
β
 e′i, h

′

σ ` e1..n, h
(i,β)
 e1..i−1 e

′
i ei+1..n, h

′
(Interleave)

σ ` e, h β
 e′, h′

σ ` E[e], h
β
 E[e′], h′

(Ctx)
ei = C[syncede′ w v]

σ ` e1..n, h
(i,τ)
 e1..i−1 C[v] ei+1..n, h

(UnLock)

h′ = h[a↓3(f) 7→ v]
σ ` a.f = v, h

a
 v, h′

(Assign)

ei = C[synce′ a e] w = h(a)↓1
∀j ∈ {1..n} : Locked(ej , w) =⇒ i = j
e′′ = C[syncede′ w e]

σ ` e1..n, h
(i,τ)
 e1..i−1 e

′′ ei+1..n, h

(Lock)

σ ` a.f, h a
 h(a)↓3(f), h

(Field)
σ ` frame σ′ v, h τ

 v, h
(Frame2)

σ ` this, h τ
 σ(this), h

(This)
σ′ ` e, h β

 e′, h′

σ ` frame σ′ e, h β
 frame σ′ e′, h′

(Frame1)

h(a) unde�ned
h′ = h[a 7→ (_, c, λf.null)]
h′, σ ` a : u _

σ ` new u c, h τ
 a, h′

(New)
e = S(MBody(h(a)↓2,m))
σ ` a.m(v), h τ

 frame (a, v) e, h
(Call)

S : SrcExpr → RunExpr
S(sync e1 e2) = syncS(e1) S(e1) S(e2)

S(Con(e1 . . . en)) = Con(S(e1) . . . S(en)) (for all other Con ∈ SrcExpr)

Figure 3.5: Small step operational semantics
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class A {

A m(B x) { x.foo(null).bar(null); }

}

class B {

B foo(B x) { this; }

B bar(B x) { null; }

}

Figure 3.6: Example code to demonstrate the semantics of method call

they are merely to help us formalise race conditions. At the multi-threaded level, each

step may introduce at most one more thread, stopped threads are never eliminated from

the system, and we wrap actions with the index of the thread that caused them.

Method calls are modelled by substituting the call construct with the method body

in question combined with the stack frame, which records the receiver and parameter.

The frame σ e construct marks the boundaries between the di�erent calling contexts in

the run-time expression, and holds the new stack σ, which is used to execute the method

body e.

Consider the code in �g. 3.6. If we assume a is the address of an A object on the

heap, and likewise b is the address of a B object, let us execute a.m(b) with respect to an

arbitrary base stack frame. The execution will not change the heap, so will only describe

the evolution of the run-time expression. We underline new code to make the changes

easier to follow. Firstly the call to m is substituted with the body of m:

frame (a, b) (x.foo(null).bar(null)) (Call)

Immediately this introduces a new stack frame that holds the observer and argument

(a, b) for the invoked code. So, when we evaluate x within this code, we refer to the stack

frame (a, b) instead of the base stack frame:

frame (a, b) (b.foo(null).bar(null)) (Var)

Now we have another method call, so we invoke the method body for foo:

frame (a, b) ((frame (b, null) this).bar(null)) (Call)
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Now we have code from two invoked methods in the thread, and consequently two nested

stack frames. As before, we use the innermost stack frame to reduce this:

frame (a, b) ((frame (b, null) b).bar(null)) (Var)

Now there is nothing left to evaluate within the stack frame, we can return the value and

destroy the frame:

frame (a, b) (b.bar(null)) (Frame2)

frame (a, b) (frame (b, null) null) (Call)

frame (a, b) null (Frame2)

null (Frame2)

The sync construct of the run-time language has an extra expression subscript when

compared to the source language sync. The (Call) semantics rule translates the invoked

method body through the S substitution, which uses a copy of the lock expression for the

the extra subscript expression. The subscript does not a�ect the behaviour of the program,

it is just instrumentation that was needed for proving race safety. We demonstrate the life-

cycle of a sync construct with an example: The source expression sync e e′′ is translated

by S into the run-time expression synce e
′ e′′. Initially e = e′ but as the expression

reduces, the e′ will reduce until it reaches an address a. Then, the lock that guards a

(i.e., its owner), w will be taken. The subscript persists under this syncede w e
′′ expression

until e′′ terminates and the lock released. The subscript expression e will always remain as

a record of the initial locking expression, even after the main body has started executing.

The semantics rules (Cast) and (New) use the run-time universe type system to

constrain their behaviour (e.g., in (New), we use the type system to determine the owner),

this makes the proofs simpler. In the case of new any c, the owner is arbitrary, i.e., the

semantics is non-deterministic. This is perhaps unusual but it does not a�ect our result,
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so we did not complicate the type system by explicitly disallowing it. The syntax allows

for the expression new self c but this will always result in a stuck execution4. In practice

we could disallow the use of self and any when constructing new objects, in either the

syntax or the static type system. As one would expect, the semantics deterministically

chooses the owner of the new object in the case of peer and rep.

For interleaved execution we use the context C[•], which extends the evaluation con-

text syntax E[•] to add the stack frame construct:

C[•] ::= . . . | frame σ C[•]

Rule (Lock) represents the locking of an object, e�ectively rewriting a thread as follows:

C[synce′ a e] C[syncede′ w e]

provided that no other thread has locked that object (Locked(ej , w)⇒ i = j). Note that

it is w = h(a)↓1, the owner of the object, that is actually locked. This is because we are

e�ectively locking all the objects owned by w, not just the object at address a.

The predicate Locked(e, w) determines whether the thread e has the lock on object w: It

holds whenever the construct synced_ w _ is a subexpression of e.

In rule (Spawn), Active(σ, e) provides the σ′ from the innermost frame σ′ _ within

the thread e according to the context rules for C[•]. If there is no such frame σ′ _, it

returns σ.

3.4.2 Encodings

Our model language is small but we can consider additional features indirectly since

they can be encoded. Conditional statements, numbers, arithmetic, and Booleans can

be encoded as in the Object Calculus [2]. Sequential composition e; e′ can be encoded

using method call e.m(e′) assuming a method m that returns its parameter is added to

the class of e. Multiple method arguments can be encoded by passing a single newly

4It would need to reduce to an unused address that is equal to σ(this), but this address is already
used so reduction is not possible.
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constructed object with the arguments assigned to its �elds. Iteration can be encoded

with tail recursion.

3.5 Universe Type System

The universe type system is given in Fig. 3.7. The judgement Γ ` e : t gives the universe

type t of an expression e with respect to an environment Γ. As there is only one method

parameter, this environment is simply a pair containing the types of this and x.

Universe annotations have meaning only with respect to an observer as discussed in

(�3.2). The type annotations in �eld and method signatures are meant with respect to

the object that contains them. When we are typing method bodies, the annotations

within are considered with respect to the object this, whatever value this might have

at run-time. Thus the type returned by the type system is also meant in respect to this.

The ownership type quali�er self (a specialisation of peer) is used for the parameter

this, e.g.

(self Dept,_) ` this.first.s : rep Student

(self Hall,_) ` this.first.s : any Student

There is one aspect of this type system that deserves detailed discussion because we

use it later. The purpose of u u′ is to determine the type that best describes an object

that is �twice removed� from the observer by references of type u and u′. In other words,

we have two subsequent references and two respective types, and we want to know the

type of the most distant object from the observer. ( ) is de�ned in Fig. 3.8. The object

(1) in �g. 3.1 observes the object (8) to be peer. (8) considers (9) to be rep, so (1)

considers (9) to be peer rep = any.

We use ( ) to `translate' a type u′ from one observer to another, where the old

observer is u with respect to the new observer. This is useful for class member lookups

where the type of the member is from the perspective of the object that contains it, but
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_,_ ` _,_ : any
(Any)

a,_ ` _, a : rep
(Rep)

_, w ` _, w : peer
(Peer)

a,w ` a,w : self
(Self)

Γ ` this : Γ(this)
(This)

Γ ` x : Γ(x)
(Var)

Γ ` e : t′

Γ ` (t) e : t
(Cast)

Γ ` null : t
(Null)

Γ ` e : t′

t′ < t

Γ ` e : t
(Sub)

u 6= self

Γ ` new u c : u c
(New)

Γ ` e : u c
F (c, f) = t

Γ ` e.f : u t

(Field)

Γ ` e : u c
Γ ` e′ : t
F (c, f) = u t

Γ ` e.f = e′ : t

(Assign)
Γ ` e : t′

Γ ` spawn e : t
(Spawn)

Γ ` e : t
Γ ` e′ : t′
Γ ` sync e e′ : t′

(Sync)

Γ ` e : u c
Γ ` e′ : t
M (c,m) = tr m(u t)
Γ ` e.m(e′) : u tr

(Call)

∀c′ ≥ c : F (c′, f) = t =⇒ F (c, f) = t
∀c′ ≥ c : M (c′,m) = t′r m(t′x) =⇒ M (c,m) = tr m(tx)

(where tr ≤ t′r, tx ≥ t′x)
M (c,m) = tr m(tx) =⇒ (self c, tx) ` MBody(c,m) : tr
` c

(WFClass)

A program is well-formed i� ∀c : ` c

Figure 3.7: Static universe type system
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u′

u u′ self peer rep any

u

self self peer rep any

peer peer peer any any

rep rep rep any any

any any any any any

u′

u u′ self peer rep any

u

self self peer rep any

peer peer peer any any

rep any any peer any

any any any any any

We extend to types by de�ning: u (u′ c) = (u u′) c and u (u′ c) = (u u′) c

Figure 3.8: Universe composition and decomposition

we want a type from the caller's perspective.

The opposite of ( ) is ( ), which we use to translate a type to another observer.

The object (1) observes the objects (2, 3) to be rep, however object (2) considers (3) to

be rep rep = peer.

Note that the (Spawn) rule matches any type t and does not require any particular

type of the subexpression e, it just requires it to be well-typed in the same environment.

This is because our semantics evaluates spawn e to null and thus the type rule is similar

to (Null).

Finally, we require classes to be well-formed. The types of method bodies must agree

with their signatures. Note that when typing a method body, we use self in the type

of this. This is consistent with our notion of observer for method bodies as described

above. We also require consistency between �eld and method signatures in subclasses.

To prove soundness of this system, we need a type system for run-time expressions.

This type system is capable of typing addresses using the owner of the current this

object, which is stored in the heap, and typing variables x and this using the values in

the stack σ. The judgement is h, σ ` e : t, it is given in Fig. 3.9.

In order to later prove race safety, we need to establish the soundness of the underlying

universe type system. We will now give a series of lemmas and the ultimate soundness

theorem we require.
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h, σ ` σ(this) : t
h, σ ` this : t

(This)
h, σ ` σ(x) : t
h, σ ` x : t

(Var)

h, σ ` e : u c
F (c, f) = t

h, σ ` e.f : u t

(Field)

h, σ ` new t : t
(New)

h, σ ` null : t
(Null)

h, σ ` e : u c
h, σ ` e′ : t
F (c, f) = u t

h, σ ` e.f = e′ : t

(Assign)

h, σ ` e : t′

t′ < t

h, σ ` e : t
(Sub)

h, σ ` e : t′

h, σ ` (t) e : t
(Cast)

h, σ ` e : t′

h, σ ` spawn e : t
(Spawn)

h, σ ` e : t
h, σ ` e′ : t′
h, σ ` synce′′ e′ e : t

(Sync)

h(a)↓2 = c
σ(this), h(σ(this))↓1 ` a, h(a)↓1 : u
h, σ ` a : u c

(Addr)

h, σ ` e : t
h, σ ` syncede′′ a e : t

(Synced)

h, σ′ ` e : t
h, σ ` σ′(this) : u _

h, σ ` frame σ′ e : u t

(Frame)

∀i ∈ {1..n} : h, σ ` ei : ti
h, σ ` e1..n : t1..n

(Threads)

h, σ ` e : u c
M (c,m) = tr m(u t)
h, σ ` e′ : t
h, σ ` e.m(e′) : u tr

(Call)

h(a) = (_, c, f lds)
∀F (c, f) = t : h, (a,_) ` flds(f) : t
h ` a

(WFAddr)

Heap well-formedness:
` h ⇐⇒ ∀a ∈ dom(h) : h `
a

Figure 3.9: Run-time universe type system
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Lemma 3.5.1 The ( ) operator composes types:

a,w ` a′, w′ : u

a′, w′ ` a′′, w′′ : u′

 =⇒ a,w ` a′′, w′′ : u u′

Proof: Case analysis of u and u′.

Lemma 3.5.2 The ( ) operator decomposes types:

a,w ` a′, w′ : u

a,w ` a′′, w′′ : u′

 =⇒ a′, w′ ` a′′, w′′ : u u′

Proof: Case analysis.

The ownership type quali�er self has a special purpose � when calling local methods

and accessing local �elds, we want the type of such accesses to be exactly the annotation

u given in the class. Note that self u = u. If we were to use peer instead of self as

the type of this, then we would lose information in the case where u = rep and the type

system would be unnecessarily restrictive.

Firstly we guarantee that at all times after an object is constructed, both its class

and its owner remain constant. As a corollary, execution will not a�ect the universe type

judgement of another expression. We present a �substitution� lemma (although there is

no conventional substitution here since we are using a stack to hold the arguments). We

require h and σ to be consistent with Γ, but the expression e is the same on both sides up

to the S translation used to record the original lock expression into the sync construct.

S is de�ned at the bottom of �g. 3.5. Finally we show soundness of single-threaded and

multi-threaded execution. These lemmas and theorems are presented below:
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Lemma 3.5.3 Ownership and class membership are constant:

h(a) = (v, c,_)

_ ` _, h _, h′

 =⇒ h′(a) = (v, c,_)

Proof: Induction over structure of reduction.

Lemma 3.5.4 The run-time types of expressions are preserved over the execution of other

expressions.

h, σ ` e : t

_ ` _, h _, h′

 =⇒ h′, σ ` e : t

Proof: Induction over the structure of h, σ ` e : t.

Lemma 3.5.5 Static type safety implies run-time type safety with respect to a suitable

stack.

Γ ` e : t

h, σ ` x : Γ(x)

h, σ ` this : Γ(this)


=⇒ h, σ ` S(e) : t

Proof: Induction over the structure of Γ ` e : t.

Theorem 3.5.6 Run-time types and heap well-formedness are preserved over execution.

` h

h, σ ` e : t

σ ` e, h e′, h′


=⇒

` h′

h′, σ ` e′ : t

Proof: Induction over the structure of h, σ ` e : t.

Theorem 3.5.7 The well-typedness of all threads in a system is preserved over a step of

multithreaded execution.
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` h

h, σ ` e1..n : t1..n

σ ` e1..n, h e′1..m, h
′


=⇒

` h′

h′, σ ` e′1..m : t1..m

Proof: Case analysis of σ ` e1..n, h e′1..m, h
′.

In the above theorem, m is either n or n + 1. New threads can initially have any type,

but must maintain this type as they execute.

In summary, we have formalised and stated soundness of a fairly typical universe

type system, as can be found in other papers [16]. As such we fall short of formally

proving correctness of the above theorems and lemmas here, as this has been done before.

However, we do use these lemmas in our later work on race safety.

We have added multi-threading to the model, but we assert this does not a�ect cor-

rectness: The heap remains well-formed at every step and threads cannot write to the

stacks of other threads. Now we will describe how we use universes to help prevent races.

3.6 Race Safety

3.6.1 Static Types for Race Safety

In Fig. 3.10 we give a type system that requires correct synchronisation and thus guaran-

tees race safety. The system uses paths and locks, as de�ned below. In the static system

we do not use paths containing addresses a. These are used later in the dynamic system.

p ::= this | x | a | p.f

l ∈ Lock ::= p | rep | peer | self

The judgement L,Γ ` e : F denotes that the expression e is race free if all locks l in

the synchronisation set L have been acquired for the duration of its execution. The

set F is the e�ect of e, i.e., the set of �elds that e may write to as it executes. We use

an annotation on methods to allow us to handle method calls. These annotations are

represented with the function Eff , which returns pairs of sets of synchronisation sets and
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sets of �elds:

Eff : (Idc × Idm)→ ( P(P(Lock))× P(Idf ) )

Well-typed expressions do not overwrite �elds appearing in their synchronisation set (this

is ensured using F ), and L is su�ciently large to guarantee for any path p in L, evaluation

of p only touches locked objects.

Lemma 3.6.1 The e�ects of well-typed expressions do not undermine their locks.

L,Γ ` e : F =⇒ L # F ∧ ∀p ∈ L : L,Γ ` p : _

Proof: induction on the derivation of L,Γ ` e : F .

We say that an expression is internally synchronised if it can be typed with an empty

synchronisation set, otherwise it is externally synchronised.

We now discuss the type system in greater detail. Suppose we have L,Γ ` e : _. The

synchronisation set and e�ect of variables and constants are empty, cf.,(Null), (Var),

(This). This also holds for (New), as object creation does not interact with other threads.

A cast does not require more locks or produce more e�ects than its sub-term, cf.,(Cast).

Spawning requires the new thread to be internally synchronised, and therefore requires its

sub-term to have an empty synchronisation set. Since the sub-term is executed in a new

thread, its e�ect is of no interest to the current thread, therefore the whole expression

has empty e�ect, cf.,(Spawn).

The (Sub) rule is a form of subsumption as it increases the e�ect and synchronisation

set, provided that none of the �elds in the new e�ects F appear in any of the paths of

the new synchronisation set L, thus preserving lemma 3.6.1.

The (Field) and (Assign) rules are similar. They calculate the lock l that guards the

object access in question, using the guarded by judgement Γ `gb e : l. This lock must be

acquired before the execution of the access in order to guarantee race safety, therefore l is

included in the synchronisation set L. The judgement �nds the owner via the ownership

type quali�er u provided that u 6= any (Univ), or uses the path p when e is such a path
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∅,Γ ` this : ∅ (This) ∅,Γ ` x : ∅ (Var)

L,Γ ` e : F
Γ `gb e : l
l ∈ L
L,Γ ` e.f : F

(Field)

L,Γ ` e : F
Γ `gb e : l
L ∪ {l},Γ ` e′ : F
L,Γ ` sync e e′ : F

(Sync)

L,Γ ` e : F Γ `gb e : l
L,Γ ` e′ : F l ∈ L f ∈ F
L,Γ ` e.f = e′ : F

(Assign)

L′,Γ ` e : F ′

L′ ⊆ L F ′ ⊆ F
∀p ∈ L : L,Γ ` p : _
L # F

L,Γ ` e : F

(Sub)

L,Γ ` e : F Γ ` e : u c
L,Γ ` e′ : F Eff (c,m)↓2 ⊆ F
L′ ∈ Eff (c,m)↓1 (u, e, e′) L′ ⊆ L
L,Γ ` e.m(e′) : F

(Call)

∅,Γ ` null : ∅ (Null)
L,Γ ` e : F
L,Γ ` (t) e : F

(Cast)
∅,Γ ` e : _
∅,Γ ` spawn e : ∅ (Spawn)

Γ ` e : u _
u 6= any

Γ `gb e : u
(Univ)

Γ `gb p : p
(Path) ∅,Γ ` new t : ∅ (New)

L # F ⇐⇒ ∀f ∈ F, p ∈ L : f 6∈ p

(u,_,_) u′ = u u′ if u u′ 6= any (unde�ned otherwise)
(_, p,_) p′ = p′[p/this] if p′ = this . . . (unde�ned otherwise)
(_,_, p) p′ = p′[p/x] if p′ = x . . . (unde�ned otherwise)
(u, e, e′) L = { (u, e, e′) l | l ∈ L }

(unde�ned if (u, e, e′) l is unde�ned for any l ∈ L)

∀c′ ≥ c : F ′ = Eff (c′,m)↓2 =⇒ Eff (c,m)↓2 ⊆ F ′,
L′ ∈ Eff (c′,m)↓1 =⇒ ∃L ∈ Eff (c,m)↓1 : L ⊆ L′

M (c,m) = tr m(tx),L ∈ Eff (c,m)↓1 =⇒
L, (self c, tx) ` MBody(c,m) : Eff (c,m)↓2

` c

(WFClass)

Figure 3.10: Static race safety type system
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(Path). If both rules are applicable, then the locks obtained will be syntactically di�erent

(e.g. self and this), but will indicate the same owner.5

The (Sync) rule calculates the synchronisation set for the expression sync e e′ by

removing the lock that guards the object accessed by e from the synchronisation set of

e′.

Because methods in our system are not necessarily internally synchronised, we extend

their signatures through Eff , whose shape is de�ned in Fig. 3.10, which returns a set

of synchronisation sets, and a set of �elds to which the method body may assign. The

(Call) rule thus requires that these locks and assignments are included in the resulting

synchronisation set and e�ects F . We use a set of synchronisation sets, rather than a

single synchronisation set because there may be more than one correct way to synchronise

a method call. E.g. a method with body this.f.s = x might have Eff as follows: 6

({{this, this.f}, {this, rep}, {self, this.f}, {self, rep}}, {s}).

The synchronisation sets expressed in Eff are given from the perspective of the target of

the method call, so they need to be translated into the perspective of the receiver before

being used. This is done through the operator , de�ned in Fig. 3.10.

Well-formed classes, cf.,(WFClass), requires, in addition to the requirements imposed

for universe type soundness, that: Firstly, if a method m existed in a superclass, then the

superclass's synchronisation sets and e�ects should be larger than those in the subclass.

Secondly, each of synchronisation sets L in Eff (c,m)↓1 should be su�cient for correct

synchronisation of the body of m.

Programs will not exhibit race conditions if they are well-typed in both the race safety

type system and the universe type system. The derivation trees for the two systems need

not correspond. We could have presented the intersection of the type systems as a single

type system but since the universe type system can stand on its own, we chose to present

5Obviously, if neither rule is applicable the expression is type incorrect.
6The synchronisation sets will grow with the number of accesses in a method body. Therefore, in

practice we would need a better syntax that scales more favourably, e.g. this|self, this.first|rep.
This is outside the scope of this thesis.
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the race safety type system alone. Also, there is only limited communication between the

systems � we use the universe type judgement in the logic of the guard judgement and

to get the class c in (Call). One can imagine how the race safety type system might be

�plugged� into other universe or ownership type systems, e.g. ones that consider generics.

Examples

We now discuss the application of our type rules with some examples. We �rst consider

the body of releaseMarks in �g. 3.1. We have an environment Γ1 where Γ1(this) =

self Dept. Because our tiny language does not include local variables, we will consider i

as a �eld in class Dept of type rep DeptStudentNode, and mentally map each appearance

of i in �g. 3.1, onto this.i. Thus,

∅,Γ1 ` sync (this) { this.i = this.first;

sync (this.i) {this.i.s.mark = . . . ;

this.i = this.i.next} } : {i, mark}

On the other hand, in �g. 3.1, line 41, we obtain the following with an environment Γ2

where Γ2(this) = self Hall:

{this, this.i},Γ2 ` sync (this.i.s) { this.i.s.roomClean = ...; };

this.i = ... : {roomClean, i}

Because this.i.s has type any Student, the type system can only use the guard rule

(Path). The type system accepts the above synchronised block because we are not as-

signing to the �elds i or s within the block. However, the following expression would be

type incorrect in Γ2, and thus we are forced to lock at every loop iteration.

sync(this.i) {... this.i = this.i.next }

The method badCode() in Fig. 3.11 accesses and synchronises this.getFirst() (line

(11)). This is not a path, but has type rep DeptStudentNode so the type system can

use (Univ) rule to accept the code. The sync (this.first2) block (line (14)) fails type

checking because the path being locked is any and also comprises a �eld first2 which
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1 class BrokenDept extends Dept {

2 any Student first2;

3 any DeptStudentNode getFirst2() {

4 sync (this) { return this.first2; }

5 }

6 rep DeptStudentNode getFirst() {

7 sync (this) { return this.first; }

8 }

9 void badCode() {

10 sync (this) {

11 sync (this.getFirst()) {

12 this.getFirst().s = NULL;

13 }

14 sync (this.first2) { // FAIL

15 this.first2 = this.first2.next;

16 this.first2.s = NULL;

17 }

18 sync (???) {

19 this.getFirst2().s = NULL; //FAIL

20 } } } }

Figure 3.11: Example

is assigned during the synchronised block. The �nal access (line (19)) is not a path (due

to containing a method call) and has type any, so no amount of synchronisation will

persuade the type system to accept it.

Finally, we give examples of method calls. Assume a method clean()7 in class

Student such that:

Eff (Student, clean) = ({{self}}, {cleanRoom})

Then, in class Dept, it holds that Γ1 ` this.first.s : rep Student. Thus, by applica-

tion of (Call), we obtain:

{rep},Γ1 ` this.first.s.clean() : {cleanRoom}

In class Hall, Γ2 ` this.first.s : any Student. Here, this.first.s.clean() causes

a type error. On the other hand, with a method makeBed(), where:

Eff (Student, makeBed) = ({{self}, {this}}, {cleanRoom})
7For simplicity, we ignore method parameters.
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We would obtain

L,Γ2 ` this.first.s.makeBed() : {cleanRoom}

(where L = {this, this.first, this.first.s})

3.6.2 Run-time Type System

As is standard, we give a run-time type system in order to prove soundness and race

safety (presented in Fig. 3.12). We type run-time expressions e according to a heap h

and stack σ. The judgement has the shape L, h, σ ` e : F . The meanings of L and F

are unchanged. The function h(σ, p) calculates the path p in the given heap and stack

to retrieve a value in a �nite number of steps bounded by the size of p. If this process

attempts to dereference null, we de�ne it to return null. In Fig. 3.10 we used (Path) and

(Univ) to derive locks from expressions. We needed to extend this functionality to derive

locks from partially executed expressions so we added the rule (Val) and replaced (Path)

by the rules (Var) and (Field). (Univ) was changed to use the run-time universe type

system, which understands partially executed expresions. (Call) needed us to extend

( ) to translate locks in the context of partially executed targets and arguments.

The type system is lifted to the sequence of threads that ultimately comprises our

model of the run-time state by (Threads). We require all the threads to be internally

synchronised and also that no two threads have the same lock. The shape of the judgement

is h, σ ` e.

We use the predicate V irgin(e) to note that e has not yet been executed i.e., contains

no addresses, synced or frame constructs. Reachable(e) (Fig.3.13) denotes that the

subterms of e have been executed in the right order, e.g., Reachable(a.f = y.f) but

¬Reachable(y.f = a.f). We extend this to sequences of expressions Reachable(e) if all

the expressions are reachable.

Because of the instrumentation of sync with a subscript that records the initial lock

expression, we need to use the same substitution as used in the semantics rule (Call)
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h(σ, p) = v

h, σ `gb v : p
(Val)

p ∈ {x, this}
h, σ `gb p : p

(Var)
h, σ `gb p : p′

h, σ `gb p.f : p′.f
(Field)

L, h, σ ` e : F L′ ∈ Eff (c,m)↓1
L, h, σ ` e′ : F Eff (c,m)↓2 ⊆ F
h, σ ` e : u c (h, σ, u, e, e′) L′ ⊆ L
L, h, σ ` e.m(e′) : F

(Call)
∅, h, σ ` a : ∅

(Addr)

h, σ `gb e′ : l L, h, σ ` e′ : F
h, σ `gb e′′ : l L, h, σ ` e′′ : F
L ∪ { l }, h, σ ` e : F
L, h, σ ` synce′′ e′ e : F

(Sync)

h, σ `gb a : l h(a)↓1 = w
h, σ `gb e′ : l L, h, σ ` e′ : F
L ∪ { l }, h, σ ` e : F
L, h, σ ` syncede′ w e : F

(Synced)

L′, h, σ′ ` e : F
σ′ = (a, v) h, σ ` a : u _
L = (h, σ, u, a, v) L′
L, h, σ ` frame σ′ e : F

(Frame)

(Var) (This) (Null) (Sub) (Cast) (New)

(Field) (Assign) (Spawn) (Univ) are as
in Fig. 3.10 but with Γ replaced by h, σ.

∀i ∈ {1..n} : ∅, h, σ ` ei : _
∀i, j ∈ {1..n}, w : Locked(ei, w) ∧ Locked(ej , w) =⇒ i = j

h, σ ` e1..n

(Threads)

(_,_, u,_,_) u′ = u u′ if u u′ 6= any(unde�ned if u u′ = any)
(h, σ,_, e,_) p′ = p′[p/this] where h, σ `gb e : p, p′ = this . . .
(h, σ,_,_, e) p′ = p′[p/x] where h, σ `gb e : p, p′ = x . . .
(h, σ, u, e, e′) L = { (h, σ, u, e, e′) l | l ∈ L }

(unde�ned if (h, σ, u, e, e′) l is unde�ned for any l ∈ L)

Figure 3.12: Run-time race safety type system

Reachable(e) ⇐= e ∈ {x, this, v, new t}
Reachable(e.f) ⇐= Reachable(e)
Reachable((t)e) ⇐= Reachable(e)
Reachable(e1.f = e2) ⇐= Reachable(e1) ∧ V irgin(e2)
Reachable(v.f = e) ⇐= Reachable(e)
Reachable(e1.m(e2)) ⇐= Reachable(e1) ∧ V irgin(e2)
Reachable(v.m(e)) ⇐= Reachable(e)
Reachable(spawn e) ⇐= V irgin(e)
Reachable(synce1 e2 e3) ⇐= V irgin(e1) ∧Reachable(e2) ∧ V irgin(e3)
Reachable(syncede1 w e2) ⇐= V irgin(e1) ∧Reachable(e2)
Reachable(frame σ e) ⇐= Reachable(e)

Figure 3.13: De�nition of Reachable
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when de�ning the following substitution lemma:

Lemma 3.6.2 Static race safety implies run-time race safety.

L,Γ ` e : F

h, σ ` x : Γ(x)

h, σ ` this : Γ(this)


=⇒

L, h, σ ` S(e) : F

V irgin(S(e))

Proof: Induction over derivation of L,Γ ` e : F

The following lemmas were needed to support the proof of soundness for the race safety

type system. Firstly, we can prove that the execution of a path yields another path with

no more �elds than the original path, does not change the heap, and the new path resolves

to the same value as the original path. This was necessary to show that the execution of

expressions does not change the lock that guards it.

Lemma 3.6.3 Path resolution is preserved over execution.

h(σ, p) = v

σ ` p, h e, h′

 =⇒

e = p′, h = h′

h′(σ, p′) = v

∀f 6∈ p : f 6∈ p′

Proof: induction over σ ` p, h e, h′.

A given expression should be guarded by the same lock no matter what state of execution

the expression has reached. We require heap well-formedness because we need the universe

type judgements within the guard logic to be preserved over the execution of e.

Lemma 3.6.4 Guards are preserved over execution.

h, σ `gb e : l

` h

σ ` e, h e′, h′


=⇒ h′, σ `gb e′ : l

Proof: Case analysis of h, σ `gb e : l.
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If the heap has changed enough since the lock p was taken that p resolves to a di�erent

object, then the lock l = p no longer guards the same objects. This lemma establishes that

the heap changes are not su�cient to cause this, as long as the e�ect F of the execution

does not contain a �eld used by p.

Lemma 3.6.5 Path resolution is preserved over execution of other expressions.

h(σ, p) = v

σ′ ` e, h e′, h′

_, h, σ′ ` e : F

{p} # F


=⇒ h′(σ, p) = v

Proof: Induction over steps of resolution.

The next lemma helps to prove that the guard of an expression should be una�ected by

the execution of other expressions. We require the reducing expression will not interfere

with any paths that the guard might be using, in order to invoke lemma 3.6.5.

Lemma 3.6.6 Guards are preserved over the execution of other expressions

h, σ `gb e : l

σ′ ` e′, h _, h′

_, h, σ ` e′ : F ′

{l} # F ′


=⇒ h′, σ `gb e : l

Proof: Induction over h, σ `gb e : l.

The next lemma complements lemma 3.6.6. It uses the fact that if V irgin(e), only (Field)

and (Var) are used in the derivation of h, σ `gb e : p. This means the derivation uses

neither h nor σ when l = p.
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Lemma 3.6.7 Virgin guards are preserved over the execution of other expressions.

h, σ `gb e : l

V irgin(e)

_ ` _, h _, h′


=⇒ h′, σ `gb e : l

Proof: Induction over h, σ `gb e : l.

The following lemma is used to show that if e is part of an expression, and e has not yet

started executing, then its race safety is una�ected by any other part of the expression

that does happen to be executing.

Lemma 3.6.8 Types of virgin expressions are preserved over the execution of other ex-

pressions.

L, h, σ ` e : F

V irgin(e)

_ ` _, h _, h′


=⇒ L, h′, σ ` e : F

Proof: Induction over L, h, σ ` e : F .

This lemma requires that the locks taken by the executing thread e′ are disjoint from the

locks L guarding the path p. This means that the modi�cations made by e′ cannot a�ect

the resolution of the path. This lemma complements lemma 3.6.5.
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Lemma 3.6.9 Path resolution is preserved over the execution of other expressions when

locks do not collide.

h(σ, p) = v

σ′ ` e′, h _, h′

∅, h, σ′ ` e′ : _

L, h, σ ` p : _

{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e′, w)} = ∅


=⇒ h′(σ, p) = v

Proof: Induction over L, h, σ ` e : F .

We can use the above lemma to show that under similar conditions, the guarded by

judgement is una�ected by the execution of another thread.

Lemma 3.6.10 Guards are preserved over the execution of other expressions when locks

do not collide.

h, σ `gb e : l

l ∈ Path =⇒ L, h, σ ` l : _

σ′ ` e′, h _, h′

∅, h, σ′ ` e′ : _

{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e′, w)} = ∅


=⇒ h′, σ `gb e : l

Proof: Induction over L, h, σ ` e : F .

Now we can show that that the execution of one thread e′ will not interfere with the

typing of another thread e, assuming the locks simultaneously held by both threads are

disjoint and the locks L required by e have not been taken by e′.
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Lemma 3.6.11 Types are preserved over the execution of other expressions when locks

do not collide.

L, h, σ ` e : F

σ′ ` e′, h _, h′

∅, h, σ′ ` e′ : _

Reachable(e)

∀w : ¬(Locked(e, w) ∧ Locked(e′, w))

{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e′, w)} = ∅



=⇒ L, h′, σ ` e : F

Proof: Induction over L, h, σ ` e : F .

Using the substitution lemma in the case of method calls, it is now possible to prove the

race safety type system is sound. Firstly we state soundness for single-threaded execution.

Note that we require the heap to be well-formed. This is necessary so that �eld accesses

yield objects of the correct owner.

Lemma 3.6.12 The type of a thread is preserved over the execution of that thread.

Reachable(e)

` h

h, σ ` e : t

L, h, σ ` e : F

σ ` e, h e′, h′


=⇒

L, h′, σ ` e′ : F

Reachable(e′)

Proof: Induction over derivation of L, h, σ ` e : F

Now, we extend the above result to multiple threads:
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Theorem 3.6.13 Well-typedness of the system is preserved over execution.

` h

h, σ ` e : t

h, σ ` e

σ ` e, h e′, h′

Reachable(e)


=⇒

h′, σ ` e′

Reachable(e′)

Proof: Case analysis of σ ` e, h e′, h′

The race safety type system has been shown to be sound, so we will now work towards

a theorem of race safety, i.e. that well-typed programs will not exhibit race conditions.

Firstly the following lemma states that objects are only accessed if the appropriate lock

has been acquired by the thread in question. Note the use of the action a to denote an

access of address a by the execution step.

Lemma 3.6.14 Objects are only accessed while their owners are locked.

L, h, σ ` e : _,

σ ` e, h a
 _,_

 =⇒
(∃l ∈ L : h, σ `gb a : l) ∨

Locked(e, h(a)↓1)

Proof: Induction over structure of L, h, σ ` e : _.

The multi-threaded case follows. We are dealing with entire threads here (as opposed

to sub-terms), thus there is no context. Therefore, unlike the above lemma, we do not

mention any set of locks L taken by the current context.

Theorem 3.6.15 Objects are only accessed while their owners are locked by the corre-

sponding thread.

h, σ ` e1..n

σ ` e1..n, h
(i,a)
 _,_

 =⇒ Locked(ei, h(a)↓1)

Proof: Case analysis of σ ` e1..n, h
(i,a)
 _,_
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For race conditions, we use the de�nition from [30], where the state of a multi-threaded

system exhibits an instantaneous race condition if the semantics allows two possible ex-

ecution steps of di�erent threads that both access the same object. The required non-

determinism is provided by the (Interleave) rule.

We prove that no well-typed state can ever have an instantaneous race condition, and

by theorem 3.6.13, all intermediate states of execution will be free from instantaneous

race conditions. We show, for an arbitrary well-typed run-time state that if two possible

execution steps can access the same object, then those steps must be steps of the same

thread:

Theorem 3.6.16 Race safety

h, σ ` e

σ ` e, h (i,a)
 _,_

σ ` e, h (j,a)
 _,_


=⇒ i = j

We prove race safety as follows:

(1) h, σ ` e

(2) σ ` e, h (i,a)
 _,_

(3) σ ` e, h (j,a)
 _,_

let w = h(a)↓1 (4)

(1) + (2) + (4) + thm3.6.15⇒ locked(ei, w) (5)

(1) + (3) + (4) + thm3.6.15⇒ locked(ej , w) (6)

(1) + (Threads)⇒

∀w′, i, j ∈ {1..n}.

locked(ei, w′) ∧ locked(ej , w′)⇒ i = j (7)

(5) + (6) + (7)⇒ i = j �
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3.6.3 Typing Algorithm

The rules in �g. 3.10 give constraints that help us to understand which programs are well-

typed and which should be rejected, however they do not tell us how to automatically

check conformance in a compiler. To address this, we now give an algorithm that will

check if a program is well-typed.

The problem can be decomposed into checking classes independently. This is done

with the programmer annotations already known, i.e., with a given Eff , and M . We also

know the class hierarchy, i.e., the ≤ relation. We use these as global variables in the

pseudocode below, as they are constant for a particular program.

For each class we must �rst check the �rst two lines of (WFClass) but this not di�cult

given that Eff , M and ≤ are �nite and available. We also check that the annotations are

valid, by checking that each of the provided L do not clash with the provided F for the

method, using the # operator de�ned earlier. It is necessary to check that all the paths

in each L are protected by locks in the same L. The algorithm to do this is a particular

instance of the main typing algorithm which is used to check the method body.

The method body is checked against all synchronisation sets in the method annotation,

i.e., Eff (c,m)↓1, to make sure that each is on its own a su�cient set of locks for protecting

the execution of the method. We use a syntax directed recursive function called check,

given in �g. 3.14. This function either returns the smallest set F for the given code, or

raises an error. We ensure the returned F is contained within the set that is annotated

for the method. The syntax try . . . end catches any errors while evaluating its body

and silently ignores them. This allows us to search more than one way of typing a sub

expression, and ignoring possibilities that yield a deeper error.

The function locks(Γ,e) �nds all locks l such that Γ `gb e : l, or the empty set if none

can be found. This is straightforward to de�ne if we assume a function universe(Γ, e),

so we omit this pseudocode. We are assuming the code has already passed a universe

type checking system, and the function universe exists to query information from this
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function check (L,Γ,e)
let F = ∅
case e in

this: return F

x: return F

null: return F

new c: return F

(t)e: return check(L,Γ,e)

spawn e:
check(L,Γ,e)
return F

e.f:
F = check(L,Γ,e)
foreach l in locks(Γ,e)

if l in L return F

end

error

e.f = e′:
F.include(check(L,Γ,e))
F.include(check(L,Γ,e′))
F.include(f)

foreach l in locks(Γ,e)
if l in L return F

end

error

e.m(e′):
let u,c = universe(Γ,e)
F.include(Eff (c,m)↓2)
F.include(check(L,Γ,e))
F.include(check(L,Γ,e′))
foreach L′ in Eff (c,m)↓1

try

if translate(u,e,e′,L′) ⊆ L return F

end

end

error

sync e e′:
F.include(check(L,Γ,e))
foreach l in locks(Γ,e)

try

F.include(check(L ∪ {l},Γ,e′))
return F

end

end

error

end

end

Figure 3.14: Pseudocode Typing Algorithm
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previous pass. It returns the type of the expression e, either peer, rep, or, as a last resort,

any8, as well as the class c. The function universe is also used in �g. 3.14 in the case of

method calls.

Finally, we need a function translate(u,e,e′,L) that is de�ned similarly to the

operator de�ned in �g. 3.10. It will return the set of locks L translated to the calling

context. If is unde�ned for a given input then translate will raise an error for the same

input. We use the try statement to iterate through all of the annotated synchronisation

sets of a method when it is called, searching for one that can be translated into the calling

context. This is because, if possible, methods should be annotated with a synchronisation

set for when they are called through an any target, as well as a di�erent synchronisation

set for when they are called through a non-any target. Type checking will therefore pass

if there is at least one way of protecting the body of the called method using the locks

that have been acquired by the caller.

3.7 Implementation Issues

For implementing our type system, we have considered ways to achieve good performance

within our semantics.

The constraints on extending classes may seem severe, particularly the requirement

that an overriding method cannot have more e�ects F than the original method. However,

if we forsake separate compilation, we can infer the e�ect F of each method, and thus

we do not need to restrict inheritance. We believe the constraints on the synchronisation

set required for a call to be race safe are not so severe because most functions will be

internally synchronised, whereas one cannot hide �eld assignments F within a function.

In general separate compilation does not mix well with concurrency since concurrency

is concerned with the e�ect of the rest of the program. Separate complication requires

speci�cation at module boundaries, and a behaviour speci�cation is quite hard to write

8A typing algorithm for the universe type system is beyond the scope of this thesis.
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and maintain. In our work such a speci�cation is represented by the sets L and F .

In practice, we could use more accurate techniques of alias detection, e.g., using a

points-to analysis, to re�ne the type system's judgement about whether a �eld assignment

a�ects a path p in L. This would allow us to reject fewer correct programs. We could

easily distinguish between identically named �elds in di�erent classes by prepending the

class name to all �elds.

It may be useful to use the method of [12] for preventing deadlock. We can require the

programmer to write additional type annotations to �rstly divide the heap into a statically

bounded set of regions [61] and secondly specify a partial order over these regions. Types

are therefore augmented with a region identi�er, which speci�es the region where the

owner of the object lies (locks are associated with the owner). The type system would

check that the speci�ed order has no cycles, and that assignments do not let variables of

a certain region reference objects of other regions.

To actually prevent deadlocks, the type system has to ensure that locks are taken

(i.e. sync blocks are nested) in the order speci�ed. Locks can statically be given numeric

values. Method signatures can be annotated with the lowest lock that they take. Thus

each call can be checked to make sure its context has not already locked a lock with

greater value than any lock the method will acquire.

Since we require an implicit owner �eld in all objects, for casts and synchronisation

of any expressions, there may be unnecessary memory overhead9. If this becomes an

issue, we propose introducing new types to lay alongside rep, peer, and self, which

would have identical semantics except that they may not be cast to any. Objects of these

types would not require an owner �eld since the owner would always be statically known.

We anticipate that programmers would use these types only when memory usage was a

problem. Static analysis could also be used to infer those objects that are never cast to

any, and optimise away the owner �eld.

Other type systems [8, 37, 35, 11, 12] have extra features such as thread local storage

9In some cases, previous work required the programmer to use an explicit owner �eld, see �g. 3.2
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and �nal variables. We did not formalise them, as although they are useful in practice,

they are well-understood and can be easily added to an implementation.

3.7.1 Distinguishing Reads and Writes

We consider two simultaneous accesses of the same object by di�erent threads to be a

race condition, but this need only be so if one of the accesses is a write. Distinguishing

between reads and writes would allow more liberal synchronisation. We now show how

this can be done with an extension of our formalism.

We need to distinguish between read and write accesses, i.e. distinguish between �eld

lookups and �eld assignments. We also need read/write locks, i.e. we need a pair of

constructs like syncR(...) and syncW (...) that attempt to acquire the read/write lock on

an object, respectively. The semantics would allow multiple threads to have the read lock

at any one time, so long as no other thread was writing. This would be re�ected in the

rule (Threads), which would ensure that if a one thread is writing and another is reading

the same object then both threads must be the same. These locks have already been

implemented in Java, and are straight-forward to add to the type system.

3.7.2 Single Object Locking

While we need to lock all objects owned by an object when iterating through nodes as in

�g. 3.1 (line 30), we do not need to lock all the peers of that object if we do not use it

for iteration. E.g. we do not need to lock the peers of this when we access this.first.

We'd like to give the programmer the choice of when to lock an object and all its peers

(as is currently available with sync) and when to lock only a single object. Then, it

would be possible for two threads to execute in parallel the releaseMarks method of the

two departments in the diagram of �g. 3.1. We extend the type system and semantics as

shown in Fig. 3.15.

Programmers use syncobj when they only want to lock the object in question e.g.

�g. 3.1 (line 40), and the old sync construct if they want to lock that object and all of its
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L,Γ ` e : F
Γ `gb e : l = (∗,_)
L ∪ {l},Γ ` e′ : F
L,Γ ` sync e e′ : F

(Sync)

L,Γ ` e : F
Γ `gb e : l = (1,_)
L ∪ {l},Γ ` e′ : F
L,Γ ` syncobj e e′ : F

(SyncObj)

ei = C[synce′ a e] w = h(a)↓1
∀j ∈ {1..n} : Locked(ej , w) =⇒ i = j

∀b : (h(b)↓1 = w ∧ LockedObj(ej , b)) =⇒ i = j

σ ` e1..n, h
(i,τ)
 e1..i−1 C[syncede′ w e] ei+1..n, h

(LockDomain)

ei = C[syncobje′ a e]
∀j ∈ {1..n} : Locked(ej , h(a)↓1) =⇒ i = j

LockedObj(ej , a) =⇒ i = j

σ ` e1..n, h
(i,τ)
 e1..i−1 C[syncedobje′ a e] ei+1..n, h

(LockObj)

Source syntax: Run-time syntax:
e ::= ... | syncobj e e e ::= ... | syncobje e e | syncedobje a e

∀i ∈ {1..n} : ∅, h, σ ` ei : _
∀i, j ∈ {1..n}, h(a)↓1 = w :

Locked(ei, w) ∧ Locked(ej , w) =⇒ i = j
Locked(ei, w) ∧ LockedObj(ej , a) =⇒ i = j
LockedObj(ei, a) ∧ LockedObj(ej , a) =⇒ i = j

h, σ ` e1..n

(Threads)

Figure 3.15: Single object locking
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peers. A thread may not lock all the peers of an object if any of its peers has already been

locked by another thread. Likewise, we do not let a thread lock a single object if another

thread has locked all the peers of that object. We use the old predicate Locked(e, w) but

we also add LockedObj(e, a), which holds when e contains syncedobje′ a e
′′ for some

e′, e′′.

We augment the lock syntax so the �all peers' locks� are now denoted with (∗, u) or

(∗, p), whereas the single object locks are denoted with (1, p). We do not need (1, u), as

a universe quali�er does not identify a single object. We updated the (Univ) and (Path)

rules to wrap their result in (∗, . . .) and give a new guard rule that returns (1, p) if the

expression is a path. The type rule for threads guarantees that no two threads have

con�icting locks.

An e�cient implementation might use a counter in the owner of an object to record

how many of its child objects have been individually locked, rather than iterating through

them all. Lock-free programming techniques can be used to ensure this has negligible

performance cost compared to a standard mutex implementation. There has been a lot

of research [7] into increasing the performance of lock operations in the most common

cases.

We believe single object locking (in the context of static race safety checkers) is a

novel idea. None of the prior work supports it. It is a small extension of our formalism,

and as such we did not incorporate it into our proofs; however, in practice it should be

simple to implement and allow more parallelism.

3.7.3 Atomicity

In some sense, the requirement for freedom from races is too weak: A program that does

not type in our system, can be �corrected� by wrapping each access in a tiny synchro-

nised block, thus converting all its race conditions to stale value errors. As described by

Flanagan [36], there are program misbehaviours due to thread interactions that are not
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classed as race conditions by the standard de�nition.10 Ideally, we would like to identify

atomicity violations [34, 35, 36] in programs, these include bugs such as stale value errors

that we currently cannot detect. This can be done by requiring that a block is atomic,

which means that the execution of such a block in the context of arbitrary threads will

be equivalent to a serialised execution of that block with no interleaving of other threads.

We therefore suggest the programmer both annotates blocks with atomic when the

block should be atomic, but also uses sync to achieve race safety and atomicity. Race

safety can be checked using the type system already presented. We would extend this type

system to recognise atomic and place additional restrictions on the locks found within.

The annotation atomic does not a�ect the semantics, universe type system, or race safety

type system. It only causes more programs to be rejected if it is used in a context where

the enclosed sync blocks are not appropriate for atomicity.

A block is guaranteed to be atomic if the whole program has no races and if the

block is two-phase [68]. Two-phase means that non-redundant sync blocks are always

nested (never sequenced). Thus the following code is not two-phase: sync (x) {x.f =

1}; sync (y) {y.f = 2}. However, if we wrapped it in another sync (y) then the last

sync block would become redundant and the whole block would be two-phase. It is

natural to provide this two-phase checking as an extension to our race safety system that

additionally requires non-redundant sync blocks to always be nested. We could present

the whole type system again with the extra constraints, but for clarity we will instead give

another type system that requires only the additional constraints needed for atomicity.

We invoke this type system by modifying (WFClass).

We propose the additional judgement A,B,Γ ` e : F , we give the rules in Fig. 3.16.

The sets A and B are subsets of Lock, and we use the set F of �elds to prevent the locks

in A and B being spoilt by assignments. A contains the locks that must be taken in order

to make e race-free and two-phase.11 Therefore if e is two-phase and race-free then A
10Some programmers use �race condition� to describe these errors as well.
11Since A is ignored if the program has no atomic sections, we still need the original type system and

L.
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must be empty (modulo subsumption). B is the set of locks required to render all of the

synchronisation redundant. Therefore if A,B,Γ ` e : F then A ⊆ B, and also A # F and

B # F .

Object accesses generate locks in A and B like they have previously in L, in rules

(Assign) and (Field). Locks are not eliminated from B by (Sync).

The need to distinguish A and B arises from the cases where expressions have more

than one subexpression, e.g., assignment, synchronisation, and method call. This can be

demonstrated in the simpler case of sequential execution i.e., e; e′, if one were trivially

added to the model. For the expression e; e′ to be two-phase, it is not su�cient to take the

union of the locks required to make e two-phase and e′ two-phase. Instead we need to take

either the locks required so that e is two-phase and the locks of e′ are all redundant, or vice

versa. For example, sync (x) {x.f = 1} is two-phase, and so is sync (y) {y.f = 2}; but

their sequential execution, i.e., sync (x) {x.f = 1}; sync (y) {y.f = 2}, is not. Instead,

we should either take x or y, therefore sync (x) {sync (x) {x.f = 1}; sync (y) {y.f = 2}}

is two-phase, and so is sync (y) {sync (x) {x.f = 1}; sync (y) {y.f = 2}}. Such a rule

for (; ) is illustrated below:

A,B,Γ ` e : F A′,B′,Γ ` e′ : F

A′′ ∈ {A ∪ B′,A′ ∪ B}

A′′,B ∪ B′,Γ ` e; e′ : F

(Seq)

The idiom A′′ ∈ {A ∪ B′,A′ ∪ B} is used where one sub-term is executed after another,

and is used in (Assign), (Sync), and also in (Call), which needs to consider the body of

the method and thus involves three sets.

(Call) also requires additional method signature annotations, which we represent by

adding a third component to Eff . This is the same as the previous Eff but also gives

an extra set of tuples (A,B) that we access with Eff (c,m)↓3. This gives a selection of

possible sets of locks required for a method to be atomic (A) and the locks required for

all the method's internal synchronisation to become redundant (B). Eff is supplied for
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each method by the programmer as before (we leave inference as further work). The full

system is presented in 3.16.

If a new thread is spawned part-way through an atomic block e, it could take a lock

not yet taken by e, and see state that should not have been visible until after e had

completed. Therefore, the execution was not equivalent to a serial execution and thus

not atomic. We prevent this by requiring the lock ⊥ ∈ B in the rule spawn. Such a lock

is impossible to acquire, and thus spawn can occur only once in an atomic block, in the

centre of the nesting of sync blocks.

Comparison with Flanagan et al.

The approach here is very similar to previous work [36, 35] but there are some di�erences

in presentation which we will now discuss. The most obvious di�erence is our use of A

and B. The previous work [36] had the notion of an `atomicity', either left mover, right

mover, both mover, atomic, or >. These relate directly to reduction [59] and indicate how

the action commutes with arbitrary actions in other threads. Atomicities were explicitly

ordered and the ordering was used in the type system rules to require, e.g., that the

expression be at least atomic. Operations were de�ned to join, compose, and take the

iterative closure of atomicities, and these were used in the rules for branching, sequential

composition, and loops respectively. Our approach was to use a similar approach to the

race safety type system, i.e., to use sets. The type system gives the set of locks A required

for an expression to be atomic, and also the set of locks B needed for it to be a both mover.

This also meant we needed to de�ne no extra operations, we just used basic set operations

like union and membership in our rules.

We believe our type system bene�ts from this di�erence, especially when compared

with more recent work [35]. The original work abstracted from synchronisation, requiring

accesses to be marked in the input source code to indicate whether they were appropriately

synchronised. This later work, like ours, used the type system to indicate what the
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atomicity of an expression would be, in the context of arbitrary synchronisation. In other

words it was able to derive what kind of synchronisation would be needed for a particular

expression to have a particular atomicity. The atomicities were extended with conditional

operations, so could only have meaning when evaluated with a speci�c set of locks. This

meant the presentation became quite a lot more complicated than our two sets A and B.

Another side-e�ect of our two-set approach is that we cannot say a spawn statement

is atomic, as in [35]. We can only determine the locks required for it to be atomic, and

the locks required for it to be a both mover. To ensure it is atomic we put the impossible

lock ⊥ in the set B, leaving A empty, which has the e�ect of de�ning spawn to be always

atomic (never a both mover). If we were to distinguish between the locks required for an

expression to be a left mover and right mover, we could let spawn be a left mover. This

would allow the spawning of any number of threads (instead of just a single thread) after

the acquisition of locks in an atomic section, but would complicate our presentation of

the type system for what seems to be a minor bene�t.

The presence of F and # in our system solves the same problem as the requirement

in previous work [35] that synchronisation expressions be �nal. This is exactly the same

distinction as we noted previously when discussing race safety (�3.3). We use the e�ect

system instead of requiring our locking expressions to be �nal paths (paths starting from

a �nal variable and using only �nal �elds). As before, a hybrid approach could be used,

where the programmer could use an empty set F if the path in the locking expression was

�nal.

3.8 Chapter Summary

We wanted to use universe types for race safety because we believe the annotations are

simpler and thus a more programmer-friendly experience than the related work, which uses

more conventional ownership types. We have given a language, semantics, and race safety

type system. We have proved that our system prevents races (�A). We took the approach
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of de�ning a minimal system and then giving a number of straightforward extensions that

add features to the type system and allow more parallelism in programs. These extensions

can distinguish between read/writes, prevent deadlocks, verify atomicity, and allow locks

to be taken at the granularity of single objects.

Ownership types are important for good race safety type systems because they allow

the type system to understand the extent of heap accesses in while loops and recursive

functions. The ownership types in our system are di�erent to those in the related work.

Our system has the quali�er any, which can be used to implement open data structures

without constraining the ownership hierarchy and thus the synchronisation of the rest of

the program.

We found that our type system required fewer annotations than previous work [31,

11] and that the cases of accessing di�erently owned objects, it could understand more

programs. We also used a system of e�ects, that we do not believe has been tried before,

which lets the programmer use non-�nal paths. Another advantage of using universes

is that they have already been implemented in JML[58]. In the future we would like

to extend and re�ne our system to include generics using the techniques discussed in

[25]. We have shown how the type system could be extended to also ensure not just race

safety but also atomicity. However in the next chapter we propose a di�erent approach

to ensuring atomicity that requires much less input from the programmer.
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Eff : (Idc × Idm)→ ( P(P(Lock))× P(Idf )× P(P(Lock)× P(Lock)) )

_,_,Γ ` e : _
∅, {⊥},Γ ` spawn e : ∅ (Spawn)

e ∈ {null, x, this, new t}
∅, ∅,Γ ` e : ∅ (Triv)

∅,B,Γ ` e : F
∅,B,Γ ` atomic e : F

(Atomic)

A,B,Γ ` e : F Γ `gb e : l
A′ ∪ {l},B′,Γ ` e′ : F l ∈ B′
A′′ ∈ {A ∪ B′,A′ ∪ B}
A′′,B ∪ B′,Γ ` sync e e′ : F

(Sync)

A′,B′,Γ ` e : F ′

A′ ⊆ A, B′ ⊆ B,
A ⊆ B, F ′ ⊆ F ,
A,B # F

A,B,Γ ` e : F

(Sub)

A,B,Γ ` e : F Γ `gb e : l
A′,B′,Γ ` e′ : F l ∈ A′′,B′′ f ∈ F
B′′ = B ∪ B′ A′′ ∈ {A ∪ B′,A′ ∪ B}
A′′,B′′,Γ ` e.f = e′ : F

(Assign)

A,B,Γ ` e : F
A,B,Γ ` (t) e : F

(Cast)

A,B,Γ ` e : F
Γ `gb e : l
l ∈ A,B
A,B,Γ ` e.f : F

(Field)

A1,B1,Γ ` e1 : F A2,B2,Γ ` e2 : F
Γ ` e1 : u c (A3,B3) ∈ Eff (c,m)↓3
B4 = (u, e1, e2) B3 Eff (c,m)↓2 ⊆ F
A4 = (u, e1, e2) A3 B4 ⊆ B1 ∪ B2

A5 ∈ {A1 ∪ B2 ∪ B4, B1 ∪ A2 ∪ B4,
B1 ∪ B2 ∪ A4}

A5,B1 ∪ B2,Γ ` e1.m(e2) : F

(Call)

∀c′ ≥ c : F ′ = Eff (c′,m)↓2 =⇒ Eff (c,m)↓2 ⊆ F ′,
L′ ∈ Eff (c′,m)↓1 =⇒ ∃L ∈ Eff (c,m)↓1 : L ⊆ L′
(A′,B′) ∈ Eff (c′,m)↓1 =⇒

∃(A,B) ∈ Eff (c,m)↓3 : A ⊆ A′,B ⊆ B′
M (c,m) = tr m(tx) =⇒

∀L ∈ Eff (c,m)↓1 :
L, (self c, tx) ` MBody(c,m) : Eff (c,m)↓2

∀(A,B) ∈ Eff (c,m)↓3 :
A,B, (self c, tx) ` MBody(c,m) : Eff (c,m)↓2

` c

(WFClass)

Figure 3.16: Static atomicity type system
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Lock Inference

4.1 Introduction

We have just seen how programmers can implement atomicity manually, using locks.

We have given a type system that can be used to show that marked blocks of code

are successfully made atomic by the programmer's locks. However, there is an alternative

approach that has many advantages. The system can take the programmer's speci�cation,

in terms of the same atomic annotations used for lock checking, and implement the

atomicity itself. In such a system, there are no programmer-supplied locks, and marking

a block with atomic changes the behaviour of the program by eliminating interactions

from other threads. We are thus changing the role of atomic to a language feature in its

own right, and we call this feature the atomic section.

In the past, languages have evolved by o�ering higher level abstractions to program-

mers and taking care of the low-level details transparently in the compiler and run-time.

Garbage collection and goto-less programming are examples of this philosophy. Both o�er

semantics that are quite distant to that provided by the hardware, and �ll the gap using

a combination of compile-time and run-time techniques. Atomic sections continue this

philosophy in the context of concurrency.

The semantics of the atomic section can be understood by imagining that all the other

90
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threads are suspended while the atomic section is executed. This clearly prevents all of

the problems described earlier (�2.2), and keeps intermediate states well-encapsulated. Of

course, implementations can use more e�cient approaches that allow threads to proceed

in the background to some extent, as long as their presence does not change the observable

behaviour of the system as a whole.

While atomic sections are attractive for programmers, they put a great burden of

correctness and performance upon the language implementation. In this chapter we will

study the problem of extending current object-oriented programming languages to support

atomic sections in an e�cient manner. We hope to show that the language implementation

is the correct place to handle the problem. We will also discuss some concessions in the

high level semantics that are needed to build e�cient implementations, and whether or

not such concessions are acceptable in large software products.

4.2 Related Work

Naive atomic section implementations can just stop every other thread when an atomic

section is entered. We call this a stop the world implementation. However, more e�cient

implementations need to allow threads to proceed when they are not accessing the same

memory as the atomic section. On a shared memory architecture with n independent

cores, the latter implementation could be as much as n times faster than the naive im-

plementation. Thus understanding memory access is a key problem for all atomic section

implementations. There are currently two main techniques for understanding memory

accesses, and they divide all the existing work into two categories, which we will discuss

separately, and then compare.

4.2.1 Transactions

The �rst implementations of atomic sections used transactional memory or more sim-

ply transactions. We also say such implementations are transactional. Transactions re-
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execute code when interference is detected, to avoid its ill e�ects. This is a form of

optimistic concurrency control that is inspired by database implementations [22].

There are two components that characterise all transactional implementations. Firstly,

problems caused by the unpredictable interactions with other threads must be detected

at run-time. What constitutes a problem depends on the transactional memory imple-

mentation in question. We discussed these kinds of problems earlier (�2.2), but we do

not avoid them as we would with locks (�2.3). Secondly, if problems are detected, the

transaction is aborted and the state is rolled back to the beginning of the atomic section

for another attempt. If no problems occur by the time the atomic section has �nished

executing, then the transaction commits and the execution proceeds onwards.

The need to support rolling back prohibits the use of certain system calls, where the

program interacts with other processes or systems that are outside the domain of the lan-

guage implementation. We will henceforth call these calls I/O. Note that it is sometimes

(but not always) possible to refactor I/O out of the atomic section, either manually or

automatically. Sometimes I/O can itself be rolled back, using a cancelling call. However

in general I/O must be restricted in atomic sections. This is one example of a restriction

to the natural semantics of atomic sections that has been considered to facilitate a more

e�cient implementation. These semantic restrictions can be complemented with a type

system that gives early warning when programs do not conform. In this case, the type

system would prevent certain operations being performed in an atomic block or functions

called from an atomic block. Alternatively, a stop-the-world implementation could be

used for these atomic sections, however the performance would obviously be very poor.

Transactional implementations di�er in what problems they can detect, how this is

done, how they prevent problems that they cannot detect, and how they roll back. De-

tection and rollback are related since both require some kind of record of what accesses

have occurred. The original proposal [47] used an extension of standard hardware cache

coherency protocols [75] to keep a thread-local copy of the state of the atomic section,
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isolating its e�ects from the rest of the system. The cache coherency protocol would then

detect con�ict (another thread accessing the same memory) through the same mechanism

it uses to coordinate cache lines between multiple cores. The local state copy is simply

discarded to roll back the atomic section, otherwise it is written back to main memory to

commit the atomic section. This implementation prevented nothing, detected everything,

and rolled back using cache lines.

A later software-based proposal [77] was similar, storing the original value and revert-

ing on abort. Accesses are tracked with in-memory data structures implemented with

compile-time instrumentation. Other proposals followed [42, 43] that were similar in

concept but di�ered in the implementation.

The aforementioned implementations have the property that accesses are understood

whether they are inside an atomic section or not. This means that an atomic section will

be rolled back if it con�icts with another thread's access irrespective of whether this other

thread was also in an atomic section. Transactional semantics that support this are called

strong. An access outside of an atomic section behaves like a normal primitive operation

(read/write), i.e., like a tiny atomic section. This is desirable because it allows non-

transactional code, i.e., code whose accesses are not tracked at run-time, to coexist with

transactional code. Strong implementations usually detect everything, prevent nothing,

and roll back by discarding a thread-local version of the state.

More recent implementations, initially proposed by Harris et al. [44], have not used a

thread-local cache of the state. Instead they have updated the shared memory directly.

This is faster in the common case where interference is rare. Such implementations use

version numbers to detect interference, and restore the original value in order to roll back.

An interesting feature of such implementations is that they use �pessimistic writes�;

they acquire a lock before each write access and release the locks when the transaction

commits. This is needed to allow direct shared memory updates. One side-e�ect of this

is that shared memory accesses must only occur in atomic sections, another restriction
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on the semantics of the atomic section, and one that can also be enforced using a type

system. Such a type system would distinguish between thread-local and shared memory

and raise an error if shared memory accesses occur outside of an atomic section [1, 66].

In contrast to the strong semantics previously discussed, this is called weak semantics.

Deadlocks can occur if pessimistic writes are not globally ordered, but can be detected

at run-time, by looking for cycles (�2.7) or by using timeouts, and the transaction rolled

back. Thus deadlocks are not visible to the programmer. In this transactional implemen-

tation, concurrent writes are prevented, concurrent reads are allowed, interference due to

a concurrent read and write access is detected, and so are deadlocks due to out-of-order

writes.

It is also possible to protect read accesses by acquiring locks. This means the transac-

tional code follows the two-phase discipline (�2.5). Interference never occurs, but rolling

back is still needed if deadlock occurs. Thus interference is prevented, but deadlock must

be detected and instrumentation of accesses is still needed to facilitate rolling back.

We have discussed hardware and software implementations of transactional memory.

The overheads associated with the instrumentation only a�ect software implementations,

but hardware implementations are limited by the size of the cache and thus cannot han-

dle atomic sections with many accesses. They also have problems with long (as in time)

atomic sections since page faults, interrupts, context switches, or anything else that causes

the cache to be reset will prematurely abort the transaction. The latter problem takes

away many of the encapsulation bene�ts provided by the atomic section, since the pro-

grammer has to know how many accesses are performed by all the functions he calls.

Consequently, hybrid approaches have been proposed [20] that use hardware transac-

tional memory for small atomic sections, otherwise drop down to software transactional

memory. This also allows programs that use transactional memory to be portable i.e.,

executed on architectures with and without hardware support, although faster if support

is available.
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Finally, a manifestation of the locks concept of granularity (�2.6) is visible with trans-

actional implementations, since accesses can either be measured at word level (�ne gran-

ularity) or at the level of objects (coarse granularity). In the latter case, accesses of

di�erent �elds in the same object are considered to con�ict (even though they do not)

whereas in the former case no con�ict would be detected. When transactions use locks,

the earlier notion of granularity can be directly applied, although most implementations

use exactly one lock per object or �eld since it gives the most parallelism and there does

not seem to be any advantage in using a coarser granularity. Nevertheless, this shows that

granularity is a more general concept in concurrency control than we originally suggested.

4.2.2 Lock Inference

Another way of implementing atomic sections is to use locks according to the two-phase

discipline. The problem with locks is that they are hard for programmers to use correctly.

If the implementation takes on this responsibility, transparently to the programmer, then

this problem evaporates. However, inserting correct locks is not easy, because it requires

the compiler to predict what accesses code will perform, a classically di�cult problem.

All lock inference approaches restrict the semantics of atomic sections so that no shared

accesses can be performed out of an atomic section. However, as mentioned previously

(�4.2.1), type systems can be used to help the programmer comply. It is also possible to

add tiny atomic sections around accesses that are outside of an atomic section, should a

strong semantics be needed.

The �rst and least extensive attempt at inferring locks was Flanagan et al's extension

[33] to previous lock checking work (�3.3). This was not an attempt to infer locks com-

pletely, but more to �ll in a few programmer omissions. However, there have been many

approaches that do attempt to infer locks completely, and they di�er quite widely.

Points-to sets [3] are used for alias analysis in compilers but can also be used for lock

inference [84, 49]. Objects are characterised by the place in the code where they are
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created. This is a syntactic notion that is very amenable to program analysis as it is

bounded in the cases of loops and recursion. We can use this object characterisation for

accesses as well, by associating a lock with each creation site. The lock in question then

protects all the objects created there. Objects are typically assigned from one variable to

the next in the code; this �data �ow� [71] is approximately understood by the program

analysis. Ultimately each variable ends up associated with the set of object creation sites

that (conservatively) represents the objects that it may reference. Then inferring what

locks must be acquired to protect an atomic section is as simple as inspecting the points-

to information associated with the variables being accessed in the atomic section. This

approach is attractive because it is only a small extension to an extensive body of pointer

analysis research and implementation. Unfortunately it cannot make use of instance locks

so granularity tends to be poor. The number of locks is bounded by the number of object

creation sites and thus the size of the program.

Meanwhile, a di�erent technique was used in Autolocker [63]. Both instance and

static locks were allowed, speci�ed by the programmer with guard annotations. These

were similar to those used in the lock checking work (�3.3), although less powerful since

iterations over objects at instance-level granularity cannot be expressed due to the lack of

any ownership-like features. Assignment was restricted to avoid non-termination in the

static lock inference phase. More recently, custom alias analyses have been used to allow

instance locks without annotations, falling back to static locks if aliasing is uncertain

[28, 41], but the choice of instance/static locks was still on a per-object basis.

Only recently, in our published work [19, 18] and independently by Cherem et al. [13],

have multi-granularity locks been used to allow the instance/static distinction on a per-

atomic-section basis, without any annotations. These recent works are also the �rst to

use translation techniques to handle assignment rather than restricting it or falling back

to static locks. By considering assignment more accurately we only need to use static

locks when programs iterate over objects, and with ownership types we could avoid them
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altogether (future work).

One key di�erence between our approach and Cherem et al. is that they force the

termination of their algorithm in such iterations with a simple static bound, whereas

we represent cycles accurately with a non-deterministic �nite automaton (NFA). This

technical di�erence should result in a better approximation of accesses and thus a more

precise application of locks. It also creates future opportunities for removing static locking

entirely. The program analysis used by Khedker et al. [55] was very similar to ours in its

use of NFA-like representations, but there they are used to statically accelerate garbage

collection.

We believe our approach is the only one that prevents deadlock with a dynamic

mechanism (�2.7) as transactions do. When deadlock is detected the locks are released and

reacquired. We avoid the full roll back of transactions by acquiring all of the locks together

at the entry to the atomic section. Thus there is nothing other than lock acquisitions

to undo. The other approaches attempt to statically order lock acquisitions, falling back

to static locks if this is not possible. Our work has been a constant struggle to preserve

instance locks wherever possible.

One contribution of Cherem et al. [13] is a framework for specifying and combining

lock inference approaches. Although they distinguished between dereferencing and object

o�set (i.e., in the style of the C language), whereas we just use �elds (in the style of Java),

we believe our NFA approach can be represented in this framework. However, it is less

useful because our approach is monolithic, supporting all the features we need without

needing to be combined with other analyses. Another contribution of the above is a

notion of correctness that is intuitively similar to ours, but specialised for their approach.

Finally, a very similar technique [69] to lock inference has been used to implement

futures in a Java-like language. Futures are a much simpler concurrency primitive than

atomic sections, but their e�cient implementation presents many of the same problems.

The futures mechanism spawns a thread to compute a short background task and then
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joins it to receive the result of the class slightly later in the program. Basic synchronisation

is needed to stop the two threads interfering with each other. The cited paper used points-

to information to infer what accesses may be performed by both threads in order to insert

appropriate synchronisation.

4.2.3 Comparison

On the surface, lock inference and transactions are very di�erent methods of implementing

the semantics of atomic sections. However they share some similarities, and in other ways

they complement each other.

Both approaches have proposed restricting shared memory accesses outside atomic

sections. Both approaches have made use of run-time deadlock detection (�2.7). Both

approaches synchronise by holding back a problematic thread: Transactional implementa-

tions do this by forcing the thread to return to an earlier state, whereas inferred locks do

not allow the thread to proceed from this earlier state in the �rst place. Both approaches

have seen proposals for �eld-level and object-level granularity of accesses. However there

is still a fundamental di�erence between them:

Lock inference tries to predict what accesses may occur. Because this is an undecidable

problem, it must be approximated. This approximation will introduce inaccuracies and

this will manifest as over-conservative locking and a loss of parallelism. Transactions avoid

the problems of static inference by measuring accesses at run-time. They therefore have

perfect accuracy when compared to lock inference. However, the price they pay is that

they miss the opportunity for preventing errors and thus need to occasionally roll back

the state to hide these errors. This means accesses must be instrumented and there is a

major performance penalty. Hardware transactional memory can avoid the performance

penalty but is only practical if transactions can be unbounded, which means falling back

to software instrumentation if the platform-speci�c limits are exceeded, and thus falling

back to software overheads.
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This leaves us with an interesting trade-o�. With transactions, one su�ers a signi�cant

linear performance cost i.e., the performance of a single thread is decreased. With lock

inference, this is not the case (aside from the small impact of the locks themselves).

However, it is possible to be over-conservative and acquire unnecessary locks, blocking

non-interfering threads and hurting parallel performance.

While this is the clearest performance di�erence, there are other complications that

do not form such a neat picture. When a pair of transactions collide, one of them rolls

back. Not only is the rolling back a waste of cycles, but so was the computation of the

now-discarded state. On a system with more threads than cores (a likely situation when

software has been designed for a range of architectures) these cycles could have been

put to better use executing another thread. Even if the core would otherwise be idle,

unnecessary cycles will waste power1 and also can crowd the memory bus. To avoid these

wasted cycles, some transactional implementations use back o� techniques where threads

sleep for a short while after a transaction aborts before retrying. However, sleeping for

too long hurts performance as well, and it's often not clear for how long a thread should

sleep. Di�erent algorithms will perform di�erently with di�erent back o� strategies, and

some implementations [46] allow the user to select a particular one. This adds complexity

and exposes the fact that an atomic section is implemented with transactions.

There are also di�erences in the amount of compiler technology needed. The instru-

mentation required for software transactional memory is relatively easy to insert. Lock

inference needs to know what objects will be accessed, without executing the code in ques-

tion, so a full static inference is always required. If implemented in compilers, both lock

inference and transactions need access to the whole program in order to handle functions

that may be invoked from atomic sections. Consequently, native calls are a problem for

both approaches. Note that there has been some work to extend transactions into native

code by analysing and translating this code [85] and similar techniques could be used for

1Power is an important consideration not just in mobile devices but in servers and supercomputers,
where performance is often measured per watt. Domestic consumers are also becoming increasingly aware
of their power consumption.



CHAPTER 4. LOCK INFERENCE 100

lock inference. Plugins can be handled using JIT technology in both cases i.e., analysing

/ instrumenting the code at run-time as it is linked.

Both approaches require concessions from the simple semantics of atomic sections.

Transactions cannot roll back I/O whereas lock inference cannot easily understand re�ec-

tion. In both cases this can be solved by not allowing the problematic feature to be used

in atomic sections, perhaps enforced using a type system. It is not clear how debilitating

is the restriction on re�ection, but we expect it to be more reasonable that restricting

I/O, which is used much more heavily in software.

It's also worth comparing lock inference to programmer-supplied locks. Ideally we

would like to infer locks that are at least as good as well-written programmer-supplied

locks. However the software engineering bene�ts of using atomic sections may be enough

to persuade people to accept slightly inferior locks. The problem of granularity when

using locks is already faced by programmers. Depending on the contention in the ap-

plication, it may not be necessary to use the �nest granularity imaginable (as provided

by transactions). For this reason it may be that some future lock inference will allow

enough granularity for typical applications while still not approaching the granularity of

transactions.

However, the state of the art of lock inference leaves much to be desired in terms of

granularity. The system we present in this thesis is an attempt to shrink the gap between

lock inference and its two main competitors � transactions and manually inserted locks.

We do this by shrinking the error in the static analysis, thus allow �ner-grained locking

to be used. We therefore shrink the expected parallel performance cost of implementing

atomic sections with lock inference while still avoiding many of the pitfalls of transactions.

In the rest of this chapter we will describe our approach.



CHAPTER 4. LOCK INFERENCE 101

4.3 Pathgraph Analysis

As before, when we were checking if locks were su�cient for atomicity (�3.7.3), we use

a two phase locking protocol (�2.5). We infer the accesses of an arbitrary block of code,

and derive a set of locks that we acquire before the atomic section and release when

they are no longer needed, often at the end of the atomic section. For simplicity, we

assume that atomic sections are never nested2. We also assume everything accessed from

an atomic section is shared between threads, and everything shared between threads

is only accessed from atomic sections. The �rst restriction could be relaxed in a real

implementation, assuming the thread locality of objects is known. This would leave us

with a weak semantics (�4.2.1) as implemented by most software transactional memories.

Our lock inference analysis therefore takes an atomic section as input, which we call a

program. We henceforth assume that programs have already been converted into control

�ow graphs (CFGs) and are therefore ready for program analysis. We use a run-time

mechanism (�2.7) that detects when a thread's lock acquisition would cause a deadlock

and rolls back all the lock acquisitions of that thread. Since lock acquisitions always

appear together at the beginning of the program, only lock acquisitions need to be rolled

back and thus no transaction log is required.

In this section, we present an analysis that infers what accesses occur in an atomic

section. We will prove the analysis correct. However this is only the �rst part of the

story. Once we have the accesses, we will discuss in a later section (�4.5) how to infer

locks from them.

Consider program in �g. 4.1. We use a backwards `may' analysis [71] to infer a set

of accesses at each edge. These accesses are the accesses that may occur during the

execution from this edge onwards, but their meaning is de�ned in terms of the heap at

the edge where they occur. Starting at node 6, we �rst infer the access of the object

tmp_tyre. This propagates towards the entry point of the program. Ultimately, the set

2At run-time, one can set a �ag that disables the inferred locks of inner atomic sections, or alternatively
compile two versions of the code, i.e., with and without locking instrumentation.



CHAPTER 4. LOCK INFERENCE 102

atomic {

if (...) {

veh = car;

} else {

veh = bus;

}

veh.tyre = spare_tyre;

tmp_tyre = bus.tyre;

tmp_tyre.pressure = 42;

}

Figure 4.1: Example of an atomic section where aliasing is a concern.

atomic {

while (...) {

x = x.n;

}

}

Figure 4.2: Example of an atomic section with an iteration over objects.
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of accesses that accumulates at the entry point will be used to derive the inserted locking

code. For now we assume that there exists a mapping such that every object has a lock

that protects it and this lock can be discovered, either at compile time, or at run-time via

the object's address (e.g., as in Java). Thus we can reduce the problem to determining

the objects accessed by a program.

The analysis has to translate accesses as they are propagated to account for the

statements they pass through. For example, at node 5, bus.tyre is assigned to tmp_tyre,

so acquiring the lock on tmp_tyre before node 5 does not help us ensure atomicity since

it is not the object accessed at node 6. However, the correct object is held in bus.tyre

so we can lock that instead. Also at node 5, we add the access of bus.

At node 4, we add the veh access, but we also need to include spare_tyre. This

is because veh and bus may be aliases, and thus it may have been spare_tyre that

was pressurised. We could use an alias analysis to help here. However, if the aliasing

is still uncertain, we must conservatively approximate. In this case we include both the

bus.tyre access (not aliased case) and the spare_tyre access (aliased case).

In both branches of the conditional, there is a copy statement. At node 3, we translate

veh to bus but since the set already contains bus, we e�ectively lose veh. Node 2 is similar.

Since we do not know what branch will be chosen at node 1, we take the union of the

two branches to form the �nal set of accesses. We then map these accesses to locks that

we acquire for the duration of the atomic section.

The program in Figure 4.2 is an atomic section that iterates over objects, e.g., the

nodes of a linked list. Here, the algorithm as described above would not terminate as

the sets of accesses would grow in�nitely. To force the analysis to terminate, we redesign

our algorithm to use a non-deterministic �nite automaton (NFA) [50] at each edge, to

represent the set of accesses. We call these NFAs path graphs. They can represent a

possibly-in�nite set of paths. A path is a sequence of �eld accesses starting from a stack

variable, and can be used to characterise statically an object access in terms of the
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Figure 4.3: Path graphs representing the accesses of the previous examples

syntax of the program being analysed. We used paths to describe the accesses in these

two examples and also in our lock checking work (�3.6).

A �nite path graph can still represent an in�nite number of accesses, if it contains a

cycle. The path graphs that represent the analysis state at the entry of the �g. 4.1 and

�g. 4.2 are given on the left and right of Figure 4.3 respectively.

The path graph, like all NFAs, has a start node and can be interpreted as a set of

locks by reading along the arrows. Unlike more general NFAs, every node of a path graph

is an `exit node' so the set of represented paths is pre�x-complete. This makes sense

since in the code we cannot access an object unless it is either bound to a variable before

the atomic section began, or can be retrieved through another object, in which case this

preceding access would also be present in the path graph.

Path graphs are a very rich source of information about future object accesses. They

encode not only what is accessed but also at which node it was accessed. We can also

apply classical automata theory to them to re�ne this information. The location where

an access occurs can be used to determine if the access was a read or a write, and to look

up type/points-to information, both useful when inserting locking code. We will later

describe how to interpret path graphs to derive the locking code.

Knowing the location of the accesses in the program is the secret to making path

graphs understand iteration. If a new access is found that occurs at the same place in

the code as an existing access (this only happens when we have iteration), these two

accesses are joined together in the representation, which forms the cycle in the graph. We

do this by using the CFG nodes to form the set of nodes in the path graph e.g., all the
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x.n.n.n... accesses occur at CFG node 2. In general, the node reached by following an

arrow in a the path graph is the node of the CFG where the access occured.

In the next section we formalise the concept of path graphs and give our analysis

transition functions. We can then prove the result of the analysis is sound.

4.4 Formalism

We will now give a syntax and semantics for a small Java-like language, the program

analysis transition functions over this language, and then prove that the given transition

functions infer correct locking information. Notation: A ⇀ B is the type of a partial

map, [a 7→ b, c 7→ d] is a partial map that maps a to b and c to d. We use _ to indicate an

anonymous variable. We denote the empty sequence with ε and use . to prepend values

onto sequences.

4.4.1 Syntax and Semantics

We analyse atomic sections independently, which we refer to as Programs. We assume

programs have already been converted to a control �ow graph (CFG) representation,

where function calls are handled using bounded callstrings to approximate recursion at a

�xed depth [71].

We let x, y, z range over local stack variables, f, g range over �elds. Every CFG node

has a unique id n chosen from some countable set Node. Thus our program P is de�ned

in �g. 4.4. In order, the statements are copy assignment, object construction, heap load,

heap store, and condition. Every statement has a given successor n where execution

proceeds after that statement, except the condition 〈n;n′〉 that non-deterministically

chooses to continue execution from either n or n′. If a node has the successor n where

P (n) is unde�ned then the atomic section terminates. The program in �g. 4.2 is therefore

P = [1 7→ 〈3; 2〉, 2 7→ [x = x.n; 1]], note that P (3) is unde�ned.

We now give a model of the accesses incurred by an execution of a program P (we are
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P ∈ Program = Node ⇀ Statement
st ∈ Statement ::= [x = y;n] | [x = new;n] | [x = y.f ;n] | [x.f = y;n] | 〈n;n′〉

a ∈ Addr = N
v ∈ V alue ::= a | null
h ∈ Heap = Addr ⇀ Object
Object = Field→ V alue

f, g ∈ Field
σ ∈ Stack = V ar ⇀ V alue

x, y, z ∈ V ar
α ∈ Action = a | τ

Stop

P ` h, σ, n ε

P (n) = [x = y;n′] Copy

P ` h, σ[x 7→ σ(y)], n′  A

P ` h, σ, n τ.A

P (n) = 〈n′;n′′〉 Cond

P ` h, σ, n′  A ∨ P ` h, σ, n′′  A

P ` h, σ, n τ.A

P (n) = [x.f = y;n′] Store

a = σ(x)
P ` h[(a, f) 7→ σ(y)], σ, n′  A

P ` h, σ, n a.A

P (n) = [x = new;n′] New

a /∈ dom(h)
P ` h[a 7→ λf.null], σ[x 7→ a], n′  A

P ` h, σ, n τ.(A[a 7→ τ ])

P (n) = [x = y.f ;n′] Load

a = σ(y)
P ` h, σ[x 7→ h(a, f)], n′  A

P ` h, σ, n a.A

Figure 4.4: Syntax and Semantics of Execution Model

not interested in the resulting heap or stack). This model is abstract, but not static. We

have a judgement P ` h, σ, n  A. The intuition is that the sequence of actions A are

performed by an execution of P , from the initial heap and stack h, σ and from the initial

CFG node n. To represent non-terminating executions, we allow the execution to cease

at any point. Thus, we reason about partially complete executions, which are truncated

after an arbitrary and unbounded amount of execution. The sequence A may thus be

shorter than a completed execution. However, our correctness theorem generalises over A,

so it covers complete as well as incomplete executions. Note that while the language does

not allow assignment of null, the run-time uses null as a default �eld value, and allows

null to be stored on the stack. Assignment of null can thus be encoded by reading an

uninitialised �eld.

We can consider the execution of the above example P in the heap h = [1 7→ (n 7→

2), 2 7→ (n 7→ 3), 3 7→ (n 7→ 3)] and the stack σ = [x 7→ 1]. The heap is unde�ned at

addresses other than 1, 2, 3, and by abuse of notation, �elds other than n are null. The

execution would normally not terminate because the �list� contains a cycle. However, the
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judgement P ` h, σ, 1  1.2.3.ε holds regardless. It is also true that P ` h, σ, 1  1.2.ε

and in fact ∀P, h, σ, n : P ` h, σ, n ε.

Note that we do not record accesses of objects that are constructed by P , due to the

substitution in New. This is because the locks that we infer will ensure that the new

object remains thread-local until the end of the atomic section, so we do not have to infer

a lock for constructed objects.

4.4.2 Analysis Transition Functions

To infer locks that make P execute atomically, we use a backwards `may' analysis to infer

a static approximation of the set of objects, the path graph, accessed by P . This is in

contrast to the complete set of possible A such that P ` h, σ, n  A, which cannot be

known statically.

Our representation of P is a control �ow graph (CFG). At each CFG edge we accu-

mulate a path graph, which is a special kind of nondeterministic �nite automaton where

every state is an exit state. A path graph is a �nite representation of a potentially in�nite

set of locks, e.g., for the iteration example in �g. 4.2, we do not infer the in�nite set of

locks {x, x.n, x.n.n, . . .}, rather the �nite path graph {x→ 2, 2 n−→ 2}. First we will give

a formal de�nition of path graphs, then we give the formal transition functions that show

how path graphs are pushed around the CFG as the analysis reaches its �xed point. The

de�nitions are in �g. 4.5.

The state of the analysis, X, stores a path graph at each CFG node, which represents

the path graph at the edges pointing into that node. For conditional nodes P (n) =

〈n′;n′′〉, we simply have X(n) = X(n′) ∪ X(n′′), as is standard with backwards `may'

analyses. For all other nodes n, where P (n) = [st;n′], we calculate X(n) as follows:

X(n) = acc(n)(st)∪tr(n)(st)(X(n′)). The access function acc provides the locks required

to protect accesses performed by the local node n. The translation function tr translates

path graphs from below n so that their meaning is preserved in spite of the changes to
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Edge ::= x→ n | n f−→ n′

G ∈ PathGraph = P(Edge)
X ∈ AnalysisState = Node→ PathGraph

acc : Node→ Statement→ PathGraph
tr : Node→ Statement→ PathGraph→ PathGraph

acc(n)[x = y;_] = ∅
acc(n)[x = new;_] = ∅

acc(n)[x = y.f ;_] = {y → n}
acc(n)[x.f = y;_] = {x→ n}

tr(n)[x = y;_](G) = G \ {x→ n′|x→ n′ ∈ G} ∪ {y → n′|x→ n′ ∈ G}
tr(n)[x = new;_](G) = G \ {x→ n′|x→ n′ ∈ G}
tr(n)[x = y.f ;_](G) = G \ {x→ n′|x→ n′ ∈ G} ∪ {n f−→ n′|x→ n′ ∈ G}
tr(n)[x.f = y;_](G) = G \ {n′ f−→ _|x→ n′ ∈ G,

(@z 6= x : z → n′ ∈ G),

(@n′′′ : n′′′
_−→ n′ ∈ G)}

∪ {y → n′|_ f−→ n′ ∈ G}

Figure 4.5: The analysis

the heap and stack caused by n.

The access function adds locks to protect load and store statements, and otherwise

adds nothing. The translation functions we will explain one at a time. Copy statements

are handled simply by replacing x → n′ with y → n′ (for any n′). Construction is

similar except it only removes edges. Accesses are `lost' when they propagate through

construction because the analysis realises that the object accessed is actually thread-local

and therefore does not need to be locked. Loads are similar to copies, except that the

x→ n′ edge gets replaced by a n
f−→ n′ edge. This only makes sense if we can guarantee

that an edge y → n exists in the new path graph. This is easily shown, however, since

the access function adds precisely this edge. The case for store is (as one would expect)

the most complicated. First, we can see that it adds an edge from y to any node in

the path graph that might have been a�ected by the assignment to the f �eld. This is

because we conservatively assume everything can be an alias of everything else. However,

we know syntactically that x is an alias of x, so we can remove any x.f accesses from the

path graph. At node 4 of �g. 4.1, we have veh.tyre = spare_tyre, and below we have
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X(5) = {bus → 5, 5
tyre−−→ 6}. We therefore add the edge {veh → 4} due to the access

function acc. We also add {spare_tyre → 6} due to the last part of the translation

function tr. There is no veh → 5 in X(5), but even if there was, we would still not

subtract 5
tyre−−→ 6 from X(5) because bus→ 5 is present.

When the analysis reaches a �xed point, we know that the path graph X(n) at every

node n satis�es the constraints in �g. 4.5. We denote this with P ` X.

4.4.3 Soundness

We want our inferred path graph at the initial edgeX(n) to represent at least the addresses

accessed by the program as it executes. For this we need a concretisation function γ that

interprets X(n) in a given stack and heap to reveal what addresses it statically represents.

We overload this function to also extract the addresses from a sequence of actions A (i.e.

ignoring duplicate addresses and τ actions). We can state the theorem we want to prove:

Theorem 4.4.1 Soundness:

P ` h, σ, n A

P ` X

 =⇒ γ(A) ⊆ γ(h, σ,X(n))

Proof: Induction over length of A.

This intuitively says that whatever may be accessed by an execution beginning from n,

these accesses will be represented by the path graph at that node in the �xed point of

the analysis. It remains to see how to de�ne γ in the case of path graphs.

4.4.4 Assigning meaning to path graphs

We now consider an arbitrary path graph G and an assignment ϕ that maps each node

in this path graph to a set of addresses. We will de�ne γ by �attening an appropriate

ϕ, i.e. just keeping the set of addresses mapped by ϕ and forgetting at what node they

occur.
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De�nition 4.4.2 Flattening of assignments:

flatten(ϕ) = {a|∃n : a ∈ ϕ(n)}

De�nition 4.4.3 Valid assignments:

h, σ ` G : ϕ⇐⇒ (∀x 7→ n ∈ G : σ(x) ∈ ϕ(n)) ∧

(∀n f−→ n′ ∈ G : {h(a, f)|a ∈ ϕ(n)} ⊆ ϕ(n′))

The intuition is that if the path graph contains the edge x→ n then we want ax = σ(x)

to be present in ϕ at n. However, if the stack is unde�ned at that variable, or if it is null

then we ignore it. If the stack contains a valid address ax for x, and G also contains n
f−→ n′

then we want h(ax, f) to be present at n′, unless that address is not de�ned on the heap3

or the �eld contains null. We want addresses to �ow around the path graph, initially

with stack lookups, and then using the heap to follow �eld edges and �nd more addresses.

Even if the path graph contains a cycle, such as with our linked list example, then the set

of addresses involved can remain �nite since the heap is �nite. This is a purely theoretical

mechanism to allow us to realise a path graph in a given stack and heap. At run-time

we will use multi-granularity locks to e�ectively lock many more addresses than ϕ. To

formally represent the �ow around the path graph, we give a judgement h, σ ` G : ϕ, and

we let γ(h, σ,G) be the �attened minimal ϕ that satis�es h, σ ` G : ϕ. We say that an

assignment is valid in the context of some h, σ,G if it satis�es this judgement.

Note that there will likely be many valid ϕ for a given h, σ,G. In particular, ∀h, σ,G :

h, σ ` G : ϕmax where ϕmax = λn.Addr. There will, however, be one minimal ϕ for a

particular h, σ,G. We can de�ne a partial ordering over assignments by lifting ⊆ point-

wise: ϕ1 v ϕ2 ⇐⇒ ∀n.ϕ1(n) ⊆ ϕ2(n). We also let ϕ1 u ϕ2 = λn.ϕ1 ∩ ϕ2, i.e. the

point-wise intersection of the two assignments.

Theorem 4.4.4 Valid assignments join to make valid assignments:

3Although this cannot happen in a language like Java, for simplicity our formalism permits initial
stacks/heaps to contain unde�ned addresses.
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h, σ ` G : ϕ1

h, σ ` G : ϕ2

 =⇒ h, σ ` G : (ϕ1 u ϕ2)

Proof: Follows from the de�nitions.

If we de�ne the minimal assignment:

Φ(h, σ,G) =
d
{ϕ|h, σ ` G : ϕ}

Using the above theorem, we know that h, σ ` G : Φ(h, σ,G). Clearly, there cannot be

any other valid ϕ @ Φ(h, σ,G). Now we can �nish our notion of correctness by de�ning

γ(h, σ,G) = flatten(Φ(h, σ,G)).

4.4.5 Proof

We have proved correctness in Isabelle/HOL using Proofgeneral [5]. The �le is 800 lines

long, takes 30 seconds to process on a 3GHz P4. It is listed in an appendix (�B) and

can also be downloaded [15]. Aside from basic notation, explicit quanti�ers, and explicit

handling of the cases where partial maps do not contain a mapping from a particular

value, the Isabelle/HOL formalism is identical to the one considered here.

Theorem 4.4.1 and all auxiliary lemmas were proved automatically. Theorem 1 was a

long proof but often the �nal stages of each case were automatic. In particular, the extra

details that are required in a proof assistant (but usually omitted in a hand-written proof)

can usually be handled automatically at the beginning or end of the proof. We originally

proved correctness with a slightly di�erent formalism that had an extra parameter in the

execution judgement to accumulate the constructed objects and needed only primitive

recursion on A in the New rule. We later converted this to the form given in �g. 4.4. The

conversion required us to manually intervene in the proof, but in all cases except New

this was very easy, needing only the removal of any references to the extra parameter.

Our overall experience with Isabelle was positive, and we enjoy having greater con�dence

in the correctness of our proof.
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4.4.6 Multiple Threads

Our formalism is not threaded. Theorem 4.4.1 only states that the execution of the

atomic section, as a single thread, is conservatively approximated by the result of the

analysis. However, in the context of additional threads, one might be worried that thread

interactions could cause a di�erent set of addresses to be accessed from those that were

protected by the inferred locking code. In other words, although the meaning of the path

graph was translated during the analysis to account for changes in the state caused by

the local thread, what about changes to the state that were caused by other threads?

We have not formalised multiple threads because it would have substantially increased

the size of the formalism and proof. However, we can argue in the form of a proof sketch

that this kind of situation cannot occur. We want to show that threads only access objects

that they have locked.

First we make a number of simpli�cations. We consider only two threads that are both

executing atomic sections (it does not matter if the two atomic sections are in fact the

same atomic section). Recall that one of our initial assumptions was that objects shared

between threads are only accessed from within atomic sections, so any heap mutation

caused by a thread outside of an atomic section must be at a thread-local object that is

not touched by the other thread. This argument could also be generalised to more than

two threads.

Let us consider the state where both threads have completed the lock acquisition phase

and are about to start executing the body of the atomic section. We will be assuming the

existence of some small step semantics, where multi-threaded execution is modelled by

non-deterministic interleaving, and an arbitrary thread completes one step in each step

of the system. We can now proceed via induction on the number of steps that the system

has taken. We are trying to show that all accesses that have occurred up to and including

the current step were protected by an appropriate lock.

The �rst access of an atomic section must have been through a stack variable, which
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is thread local and thus its meaning cannot have changed since it was used in the lock

acquisition code. Thus the �rst access was correctly protected. Subsequent accesses can

also be via stack variables and the same argument can be used for their correctness,

except when the variable in question was assigned to since the locks were acquired (e.g.,

tmp = x.f ; tmp.g = 42). In this case, the lock that protects the tmp access was not

acquired by evaluating tmp but through x.f. How do we know that the value stored in

x.f was not changed between the lock acquisition phase and the tmp = x.f assignment

in the atomic section body? Recall that path graphs are pre�x complete since every node

is an exit node. This means in this case (and all other cases like it) the lock x has been

held consistently during the lock of x.f and the tmp = x.f access later on. Since the

other thread has only been accessing objects for which it has acquired appropriate locks

(induction hypothesis) we can thus be sure that it has not a�ected the �eld x.f and thus

the correct lock is held at the tmp.g = 42 access. This completes the proof sketch.

To prove this formally would require not just a small step semantics but also a notion

of interleaving and execution of the system as a whole. The semantics would begin to look

more like that of the lock checking chapter (�3.4). The reason we did not pursue this more

formally is that the e�ort would have outweighed the result. Essentially what we have

veri�ed is the two phase locking discipline itself, not some detail of our lock inference.

Since two phase locking has been used successfully for many years both in theory and

practice, it would be extremely surprising if it were not immune to the original problem.

Our semantics and proof are considerably more concise because we stuck to a big step

semantics and considered only a single thread, which we consider to be a bigger advantage

than the completeness of lifting the result to multiple threads.

4.4.7 Algorithm

The functions in �g. 4.5 give the core of the program analysis, but we have not yet given

a complete algorithm. In �g. 4.6 is an algorithm which uses tr and acc from �g. 4.5
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function analyse (P)
let wl = dom(P )
let X = [ ] // empty associative array

foreach n in dom(P ) do

X[n] = acc(n)
end

while wl 6= ∅ do

let wl' = wl

let wl = ∅
foreach n in wl' do

let old = X[n]
case P (n) in

〈n′;n′′〉: X[n].include(X[n′] ∪X[n′′])
[_;n′]: X[n].include(tr(n)(P (n))(X[n′]))

end

if X[n] 6= old wl.include(prev(P, n))
end

end

return X
end

Figure 4.6: Pseudocode Analysis Algorithm

to return an X from a given P such that P ` X. The syntax is the same as used in

the typing algorithm from the previous chapter �g. 3.14. The state of the analysis X is

implemented as an associative array that is initialised to the path graphs given by the acc

function, i.e., the local accesses performed by each node. It is populated, as the iteration

proceeds, using a modi�ed Worklist algorithm [71], and the tr function, which de�nes how

the path graphs are translated by each node. Path graphs are sets, so we use standard

set operations on them. X contains a path graph for each node n, and we accumulate

into this path graph using the include method. The function prev(P, n) returns the set

of predecessor nodes for a given node n in P . We assume this has been precalculated or

is otherwise already known. We use dom(P ) to mean the domain of P .

The prev function is used to update the worklist. For every node n that is processed,

if the iteration adds more information to X, then the predecessors of n are considered in

the next iteration, in order to �ow this information further. When X becomes stable, the

algorithm terminates.

When we implemented this algorithm we discovered a lot of time was spent pushing

path graphs through tr. However for a given tr call there were only a few additional edges

in the input path graph since the last iteration, so only these needed to be processed. By
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pushing only these deltas through tr there was a speedup of several orders of magnitude.

We leave a more re�ned implementation as further work.

4.5 Inserting Locks

In this section we describe in detail our approach for inserting locking code into an atomic

section, based on the result of the analysis previously described. We also show how the

analysis supports readers/writers and early unlocking.

4.5.1 Inferring Locks from a Path Graph

The analysis outputs a path graph, which is essentially an NFA where every node is an

exit node.

To convert a path graph to lock acquisition code, we must identify and break the

cycles. A cycle implies that an unbounded number of accesses occured and thus they

must be treated specially if we intend to insert only a �nite amout of locking code. In

�g. 4.3 the left hand side has no cycles, and the right hand would be treated by removing

the .n edge. A node is involved with a cycle if it is part of the cycle or if it is reachable

from a node that was involved with a cycle. If we iterate through a linked list then the

accesses of the nodes of the list will be involved with a cycle in the path graph, but

also any objects stored in the list (its cargo) will be involved with the cycle too and

need special treatment. Since we do not statically know which of the cargo objects was

accessed, we can only assume they all were, so the special treatment extends beyond the

cycle itself.

We treat all nodes that are involved in a cycle as follows: We attain the type of

the object accessed at that node (from the program CFG), which de�nes a multiple

granularity lock (�2.6) that protects all accesses of that type. This allows us to lock the

in�nite number of accesses represented by the path graph with a �nite quantity of locking

code. The choice of type system makes a big di�erence to the granularity of the locks,
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Figure 4.7: The same path graph after DFA transformation

as we will discuss later (�4.5.2). A path graph with no cycles can be depth-�rst-searched

to extract a �nite set of paths and thus a �nite amount of lock acquisition code can be

inserted. Paths whose locks are subsumed by the multiple granularity locks derived from

the cycles can be omitted, assuming the multiple granularity locks were. The locks must

be acquired in pre�x order, and are remembered in variables, to be released at the end of

the atomic section.

We wanted to use read/write locks, i.e. locks that allow multiple threads to have the

read lock so long as no thread has the write lock. The path graphs encode where in the

CFG the access will occur, and we can use this to determine the kind of access (load/store

= read/write respectively).

If we followed this approach with the path graph on the left of �g. 4.3, we would lock

bus twice, a waste of cycles. This is because the path graph is an NFA rather than a

deterministic �nite automaton (DFA). There is a standard algorithm that converts NFAs

to DFAs which we can use to eliminate multiple locks of the same thing. Figure 4.7 shows

the left-hand path graph from �g. 4.3 would look after conversion to DFA.

In the process of conversion to a DFA, many path graph nodes can be squashed into

a single node, e.g., nodes 4 and 5 in �g. 4.1. This means if we want to get information

from the node, e.g., the type of the object accessed or its read/write status, we must

approximate the information from the set of nodes that were compressed. Since the

access in 4 was a write, and in 5, a read, we would take the write lock on bus in order to

protect both. Similarly one can join types by taking the most speci�c super-type.
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Conversion from NFA to DFA eliminates locks that are syntactically equal, but the

same lock can still be locked twice due to aliasing. Thus we still need to use reentrant

locks to handle the cases where e.g., car and bus are in fact the same instance.

Consider atomic { y = x.f ; y.g = 10 }, for which we would lock x for reading

and x.f for writing. If x was null, then the atomic section would, by the semantics of

the language, throw a NullPointerException (NPE). More importantly, so would our

locking code. In general, throwing an exception from the locking code instead of in the

atomic section would not preserve the semantics of the atomic section, as there may be

side-e�ects from before the NPE that we must allow to happen. We need to either check

for null before locking, or catch the NPE. If x is null we do not lock it, or x.f.

4.5.2 Iteration and Granularity

Lock inference is a conservative static analysis and thus it is unavoidable that we infer

that an unbounded number of objects may be accessed in an iteration through the heap.

Our approach so far has been to represent these iterations as accurately as we can in

the analysis, using path graphs that introduce cycles only where necessary and otherwise

keep the set of accesses �nite. However, when we insert locking code we need to decide

how we should lock these in�nite sets of accesses.

As hinted earlier, we can attain the type of the in�nitely many objects from the path

graph, and use the type to lock all instances of these objects. There is a �nite number of

types, since this is bounded by the size of the program. If the type system has subtyping

then we have to lock instances of any sub-types too.

One way to do this in a Java-like language is to use the class types to de�ne the locking.

If one iterates over a list of Node objects then we lock the Node class and any subclasses.

We can use multiple granularity locks (�2.6) to minimise the impact of this strategy on

the overall granularity of the system. The bene�t of using the standard class types are

that standard programs (with atomic sections) can be accepted with no additional type
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annotations. However the granularity of the class locks is very poor, e.g., it is not possible

to iterate over two independent lists in parallel because the Node lock would be taken in

both cases.

Our earlier lock checking type system did not have this problem as it used a notion of

ownership to de�ne the locking for such iterations. If we were to use an ownership type

system here, we could lock the owner of the objects involve in the iteration. This could

in principle allow such cases as parallel iterations over independent lists. We will discuss

this more with other future directions in the �nal chapter.

4.5.3 Deadlock

Existing approaches guarantee the absence of deadlock at compile-time by always ac-

quiring locks in the same order, and if such an ordering cannot be found they typically

coarsen the granularity. If we use object types to de�ne our multiple granularity locks

then these are static, thus can be statically ordered (e.g., alphabetically). On the other

hand, our instance locks cannot be statically ordered. We want to avoid coarsening the

granularity so we detect deadlocks at run-time (�2.7) and roll back the lock acquisition

phase. Although this sounds like a transaction, there are no side e�ects to roll back, so

no transaction log is required. This is because we acquire all locks at the beginning of

an atomic section. We therefore can roll back these acquisitions without su�ering the

overhead of maintaining a transaction log.

Although some approaches acquire locks as they're needed, our deadlock rollback

requires us to take all locks at the beginning of the atomic section. We expect deadlock

to be rarer than transaction collision, because the lock acquisition phase is much shorter

(in terms of execution time) than a whole atomic section. Since two threads can only

deadlock when they are both acquiring locks, this should mean that the chance of deadlock

is much less.

Deadlock rollback also o�ers the possibility of high-priority threads forcing low-priority
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threads to give up their locks if they are stalled in a lock-acquisition phase, a solution

to what is generally called priority inversion. If implemented, this would be similar

to the contention management sometimes used with transactions. However it does not

prevent priority inversion caused by low priority threads that spend a long time executing

in atomic section bodies. Interrupting such threads would require arbitrary code to be

rolled back and we would thus need to use transactional memory.

4.5.4 Parole

If an atomic section has �nished accessing an object, but still has a lot of computation

left to complete, it can release the lock early to allow other threads to proceed in parallel

with this latter part of the atomic section. Another way of saying this, is that the latter

part of the atomic section is locked with a �ner granularity. We can also demote write

locks to read locks, which allows other threads to proceed if they only need to read the

data, and multilocks to instance locks, which liberates threads that also only need to lock

individual objects. This is particularly important in the context of conservative analysis

because it means we can get rid of our over-conservative lock acquisitions as soon as we

have executed enough of an atomic section to know for sure what objects will be accessed

during the rest of the atomic section.

Recall that our program analysis infers accesses at each edge of the CFG, and that

these are the accesses that may occur during the execution from that edge onwards. Thus

if we take a node in the CFG, and subtract the accesses from before and after that node,

we can determine if there are any locks that are only needed for the node in question

and can thus be released after the node has executed. For example, a list node may

be discovered through iteration, and then written to. Before the iteration, the analysis

has no idea which node is written so approximates the access with the (sometimes very

large) set of same-typed accesses, which is locked with a multilock. After the iteration,

this widening from single lock to multilock has not occurred so the edge contains a single
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class A { A f; }

atomic {

if (b) {

x.f = x;

} else {

x.f = y;

}

t = x.f;

t.f = null;

}

Edge Fixed point Early releases Late reacquires

1 {!x, !y} {} {}
2 {!x} {!y} {}
3 {x, !x.f} {!x} {x,!x.f}
4 {!x, !y} {} {}
5 {x, !x.f} {!x,!y} {x,!x.f}
6 {!t} {x,!x.f} {!t}
7 {} {!t} {}

Figure 4.8: Result of path graph analysis applied to early release

write lock to represent the access. Between the iteration and the access, we can thus

demote the multilock to an instance lock. This would liberate other threads that are

stalled at the acquisition of some other instance lock of the same type.

Previously (�4.5.1), we described how to infer locks from a path graph. We converted

the NFA path graph at the entry of the atomic section into DFA form to avoid unnec-

essarily acquiring the same path twice. We then used multilocks to represent accesses

a�ected by cycles and turned the rest of the graph into paths to form the locking code.

We will now perform this process at every CFG edge instead of just the entry edge. The

example in �g. 4.8 is given in source code and CFG form with edges labelled. We give the

locks calculated by this process, at each edge of the CFG, in the �rst column of the table.

An exclamation mark represents a write lock. All of the locks in this example are paths

because the atomic section has no cycles, but the subtraction method is independent of

the representation, e.g., it also works for class types. We will now discuss the example

and what code should be inserted to facilitate early release.

At the entry of the atomic section (edge 1), we take the locks {!x, !y} using the
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deadlock detection/rollback strategy described previously (�4.5.3). Once this is successful,

execution will follow one of the branches. One branch (4, 5) will cause us to eventually

access both !x and !y, and the other (2, 3), only !x, as given in the rows for edges edges

2 and 4 in the table. The analysis records that at edge 2, only the lock !x is required,

so by subtracting the set 2 from set 1 we can calculate locks to release, as listed in the

Early releases column. If the set of locks increases, e.g., from edge 2 to edge 3, we have

to acquire the extra lock in order for a later release to be well-balanced, we list this

in the Late reacquires column. Such locks have already been acquired by the thread,

reacquiring them just increases the re-entrant counter. There is no risk of deadlock. We

always acquire before release, to make sure we do not let the re-entrant counter reach

zero, so the locking remains two-phase. To summarise, the subtraction technique will

sometimes yield lock acquisitions as well as releases, when the set of accesses increases

from one edge to another.

At an assignment, where locks are translated from one variable to another, there will

always be a release of one lock and an acquire of another lock. However, these are just

due to the renaming of an edge in the path graph, so are redundant. We can remove

these redundant actions by observing that after an assignment, the left and right hand

side will alias each other. Thus a lock of !x and an unlock of !y after the assignment x =

y are redundant and can be removed. In �g. 4.8 this is denoted with strike-through text.

Since redundant locking code occurs at every assignment, this technique can signi�cantly

reduce the amount of inserted locking code, and thus avoid wasting cycles. Note that if

x and y are known to be aliased, then so are x.f and y.f so the elimination of redundant

locking code can extend to paths of arbitrary length.

The remaining acquires and releases are not redundant: Unlocking !y at edge 2 allows

other threads to proceed in parallel, as it is now certain that the thread will not write to

(or read) y. Releasing x and !t at edges 6 and 7 respectively allows the atomic section to

terminate with all locks released. This means we do not need to insert code that records
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the acquired locks so that they can be released explicitly at the exit of the atomic section.

Acquiring x and releasing !x at edge 5 is a demotion. It allows other threads to read in

parallel, as this thread no longer needs to hold the write lock on x.

The spurious lock of x at edge 3 is necessary because at this time x and x.f are aliases,

and the releases at edges 6 and 7 will serve to release the same lock twice. Therefore, in

the branch we must acquire x to balance the forthcoming releases.

There is a complication concerning nodes such as x = x.f . Consider the very simple

case of an atomic section that contains only this node. We would acquire x before the

atomic section and release x after the node. However, these locks do not balance because

x resolves to di�erent objects in each case. To solve this problem, we compile such

statements to tmp = x.f ;x = tmp which allows a release of x before the meaning of x is

changed.

A similar problem occurs around �eld updates e.g., x.f = y. While the stack does

not change, the heap does, and this can change the objects to which paths resolve. If

locking code is inserted after such a statement, and the paths involved in such locking

code contain the �eld being assigned, then the resolution can be performed before the

assignment. The resulting object can be cached in a local variable, which is simply read

after the assignment, ensuring the correct lock is acquired/released.

Objects that are created in an atomic section should begin life with their lock acquired.

This is important if we are releasing locks early. Consider the following atomic section:

x = new; y.f = x;x.g = 42. If we are releasing locks early, we would release the lock

on y after the middle statement. However this would allow us to leak the new object to

another thread, which could then access it and race with the remainder of the atomic

section. This is not a problem if we defer all lock releases until the end of the atomic

section, since the newly constructed object cannot escape. With early release it can be

solved by constructing new objects with their lock already acquired. The implementation

actually already does this, since the analysis �xed point contains the path x after the
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construction but not before it. Hence, this lock is acquired late in the normal fashion.

The code inserted among the statements of the atomic section di�ers from the code

used at the entry of the atomic section in that it does not have to check for deadlock and

rollback. It does have the problem of avoiding null exceptions, however. The solution is

the same, we test if the path is null before acquiring a lock on it. If a path resolves to

null then the access it represents will never occur, so no lock needs to be acquired. As

before, any analysis that informs us with certainty whether a path is null or non-null can

help us avoid doing these checks at run-time.

Sowing unlocking code throughout the invoked functions of an atomic section causes

problems when one of the functions is called from more than one context. A number of

solutions present themselves: Aggressively inlining or duplicating functions is simple and

minimises contention, but will increase the size of the program and may cause performance

problems such as instruction cache misses. It should be possible to release locks not

during the call but after it has returned, but a reference would have to be kept to the

objects in question in case re-assignment renders them inaccessible (this is a similar

problem/solution to the x = x.f and x = y.f cases discussed above). Alternatively,

we could acquire a given lock once for each access (rather than once for all accesses as

we currently do), and release it after each access. This could be achieved by omitting

the NFA to DFA conversion. It would involve more overhead but this could pay o� when

compared to aggressive inlining. We chose to use the �rst technique as it was the simplest

to implement, but there are various options we have yet to explore that may have di�erent

performance implications.

In conclusion, we were pleasantly surprised that we needed no extra analysis mech-

anisms to release our locks early. Our path graph analysis turned out to be powerful

enough to encode read/write information and early release information in its basic form.

There are some caveats but they occur in the later stages of the compilation.
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4.6 Additional language features

4.6.1 Arrays

We can add support for Java style arrays by adding two further CFG node types, x = y[i]

and x[i] = y. These are similar to x = y.f and y = x.f but the o�set is not statically

known. In the semantics, arrays can be objects with integer-named �elds. The semantics

of array access only di�ers in that the index of the access is taken from a variable rather

than being statically known.

In the analysis, we need to add support for these two new nodes, in the form of acc

and tr functions �g. 4.5. Recall that acc de�nes the accesses performed at a particular

CFG node. For an array access, the acc function will behave the same as an object access,

since we are aiming for a Java-like language where arrays are objects. We have already

chosen to use one lock to protect all the �elds of an object, so we also abide by this

philosophy when locking arrays, i.e., one lock protects all the elements of the array. As

such we de�ne array accesses to generate edges just like �eld accesses do:

acc(n)[x = y[i];_] = {y → n}

acc(n)[x[i] = y;_] = {x→ n}

Recall that the tr function translates the path graph through the CFG node in order to

preserve its meaning despite the changes to the state caused by said CFG node. Let us

consider code like tmp = x[i]; tmp.g = 42 where an object obtained from an array is later

accessed. To do this we need a way of obtaining the object and locking it at the beginning

of the atomic section. We need to encode array indexes into the path graphs, and support

them appropriately in the lock inference phase. It seems natural to support array accesses

at statically known indexes in the same spirit that we support �eld accesses. To this end

we extend the path graph edges to include an array access edge n
[v]−→ n′ where v is an

integer literal. The number of integer literals is bound by the size of the program so we do

not lose decidability. We can then support translating through such statements (where

the index v is a literal) as follows:
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tr(n)[x = y[v];_](G) = G \ {x→ n′|x→ n′ ∈ G} ∪ {n [v]−→ n′|x→ n′ ∈ G}

tr(n)[x[v] = y;_](G) = G \ {n′ [v]−→ _|x→ n′ ∈ G,

(@z 6= x : z → n′ ∈ G),

(@n′′′ : n′′′
_−→ n′ ∈ G)}

∪ {y → n′|_ [v]−→ n′ ∈ G}

This is exactly the same as for �eld access, and the explanations that were given then

will also apply now. However the real utility of arrays in a programming language comes

from being able to use computed indexes, i.e., where the index i is a variable on the stack.

Let us allow the edge n
[i]−→ n′ in our path graphs. Now, we must consider the possibility

that arr[i] and arr[j] are aliases, indeed also that arr[i] and arr[10] are aliases, so a

modi�cation is needed to the above rule.

tr(n)[x = y[v];_](G) = as above

tr(n)[x[v] = y;_](G) = as above ∪ {y → n′|∃i._ [i]−→ n′ ∈ G}

tr(n)[x = y[i];_](G) = G \ {x→ n′|x→ n′ ∈ G} ∪ {n [i]−→ n′|x→ n′ ∈ G}

tr(n)[x[i] = y;_](G) = G \ {n′ [i]−→ _|x→ n′ ∈ G,

(@z 6= x : z → n′ ∈ G),

(@n′′′ : n′′′
_−→ n′ ∈ G)}

∪ {y → n′|_ [i]−→ n′ ∈ G}

∪ {y → n′|∃v._ [v]−→ n′ ∈ G}

Since we have now introduced variables that contain integers into our analysis, we have

to consider statements such as i = i + 1. Previously we could ignore such statements

because they do not a�ect later object accesses, but that is no longer the case, e.g.,

consider i = i + 1; tmp = x[i]; tmp.g = 42. We could imagine extending the concept of

the path graph yet further to include edges like n
[i+1]−−−→ n′. However now we are edging

closer to the pit of undecidability since the path graphs are no-longer bound by the size

of the program. No matter how elaborately we support arithmetic, we will at some point

need to widen the analysis to get back decidability. We can do this by adding a wildcard
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edge n
[∗]−→ n′, which means every object in the array was accessed.

tr(n)[i = _ + _;_](G) = G \ {n [i]−→ n′|n [i]−→ n′ ∈ G} ∪ {n [∗]−→ n′|n [i]−→ n′ ∈ G}

tr(n)[x[v] = y;_](G) = as above ∪ {y → n′|_ [∗]−→ n′ ∈ G}

tr(n)[x[i] = y;_](G) = as above ∪ {y → n′|_ [∗]−→ n′ ∈ G}

With all these new edges in the path graph we need to revisit our lock inference procedure.

We detect nodes involved in a cycle, as before. However we consider any node reachable

from a wildcard n
[∗]−→ n′ edge to be involved in a cycle. We derive multilocks from the

types of such nodes, and remove them from the graph. This yields a tree, which we

can easily turn into paths. There may be array access edges of the form n
[v]−→ n′ and

n
[i]−→ n′ left in the path graph, but not any of the form n

[∗]−→ n′. This means we can

have paths with array accesses in them, e.g., x.y[10].f or x.y[z].f . We can resolve these

at the beginning of the atomic section, just like with �eld accesses, but we have to avoid

the ArrayIndexOutOfBoundsException. We can do this by either catching the exception

or testing the bounds ourselves before indexing into the array. If the index is outside the

bounds, there is no need to take a lock, since no access can occur. This is no di�erent to

our treatment of the null value when locking paths, as we discussed earlier.

The net e�ect of the above extensions to the path graph analysis and lock inference, is

that if an atomic section contains an access of an object obtained from an array by means

of a constant, or a variable whose value is assigned outside the atomic section, then we

lock precisely the object accessed. If, however, the array index is computed inside the

atomic section, we lock the type, paying a high cost in terms of granularity. On the

positive side, the more arithmetic the analysis is taught to understand, the more precise

locks it will infer to protect accesses of objects retrieved from arrays. But generally, it is

best to perform array index arithmetic outside the atomic section if possible.

When doing early release, we were able to demote a write lock to a read lock when the

analysis had stopped writing to an object but still had some reading to do. Similarly, we

were able to demote a multilock to an instance lock if the atomic section was not going to
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iterate over an object structure but still had some individual objects to access. In the case

of array indexing using a computed index, we may have to take a multilock as we would

not statically know what element will be accessed. However, once the array index has

been computed, the path graph would not contain the n
[∗]−→ n′ edge, and therefore lock

inference would not yield a multilock, and consequently we could demote the multilock

to an instance lock at this point, letting other threads proceed in parallel.

In conclusion, we can modify the analysis to handle arrays with much the same

trade-o�s as with objects. There may be some conservative approximation needed in

the case where the programmer accesses objects obtained from an array using an in-

dex that was computed inside the atomic section, however early release can limit the

granularity penalty.

4.6.2 Casts

The pathgraph analysis is agnostic to types. Indeed, our formalism and proof (�4.4) was

not concerned with types, and modelled all objects as having the same (in�nite) set of

�elds. It is only when we derive locks acquisition/release code from the inferred path

graphs that we make use of typing information to choose multilocks (in the case of cycles

and array accesses). As such, we can accommodate casts quite easily.

There is a recurring caveat, however: Consider atomic { y = ((A)x).f ; y.g = 10

}, for which we acquire the locks x, x.f. We must cast x to A before we can look in

its �eld f. The type of x might be some super-type of A that does not have the f �eld

we need to dereference. We must therefore either check that that the cast is possible, or

catch the ClassCastException. We know the type of x and we know the type containing

f because the path graph encodes the location in the CFG where the access occurred, and

we can look up the type information of y at that point. This is the same mechanism we

used to support read/write locks and also how we reduce cycles to multilocks. Points-to

information, if available, could tell us that x is guaranteed to be a su�ciently precise type
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at run-time, and thus could allow us to eliminate this extra check.

This solution to casting has the useful property that even if x is of type Object, we

can cast it and access it inside the atomic section without ever having to lock the type

Object. This means we do not lose precision through sub-typing, although we do have

to handle the case where the downcast fails.

4.6.3 Additional Control Flow

We have presented an analysis that operates on general CFGs, so we can handle languages

features such as break, continue, return, etc. through by adding more edges to the

CFG. We can use the standard call strings technique [76] for extending our analysis to

be inter-procedural, and conservatively approximate virtual dispatch by creating edges to

all functions allowed by the type system. As usual, pointer analysis can help us statically

resolve calls and thus determine a more precise call graph.

4.6.4 Splitting the Atom

Sometimes, it is desirable to turn o� the atomicity of an atomic section for a while,

perhaps to do some lengthy thread-local computation, or to communicate with other

threads. While it is possible to refactor the code into two separate atomic sections, this

can be challenging because atomic sections are lexically scoped. One may have to break

conditionals, loops, and even functions between the two halves of the atomic section. In

summary, one may have to make severe structural changes to the code. This motivates

language support.

The most natural way to think about the extents of an atomic section is to think of the

two points during the execution of the thread that de�ne the duration of the atomicity.

This sometimes does not correspond perfectly to lexical scoping. By analogy, sometimes

it is hard to express locking patterns with Java's lexically scoped synchronized blocks,

and one has to use the lock and unlock methods of a j.u.c lock [26]. However lexical

scoping is still preferable because in the majority of cases where the locking duration does
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class IntList {

IntList next;

int cargo;

IntList (IntList next, int cargo) {

this.next = next;

this.cargo = cargo;

} }

class ConditionVariable {

IntList waiters;

void wait() {

atomic {

waiters = new IntList(waiters,threadid);

preempt { park; }

} }

void notify() {

atomic {

unpark waiters.cargo;

waiters = waiters.next;

} }

void notifyAll() {

atomic {

while (waiters!=null) { notify(); }

} } }

Figure 4.9: Implementing wait/notify with preempt.

correspond to a lexical scope, it protects the programmer from accidentally forgetting to

release a lock. This can happen quite easily, for instance when an exception is thrown,

and a finally clause is needed.

To allow us greater expressive power without losing the bene�ts of lexical scoping, we

can use a preempt section, which when placed inside an atomic section, releases/reacquires

locks to break the atomic section into two distinct parts. We have used this construct to

implement, e.g., message passing semantics on top of atomic sections.

We show how the preempt block can be used to implement the wait/notify of a

condition variable in Figure 4.9. The IntList is a simple list of primitive integers. It is

used to store the thread identi�ers of threads waiting for a particular condition variable.

The keyword threadid gets the id of the current thread. The unpark and park keywords

allow suspending and resuming of threads, by thread id. The notify function pops an

arbitrary thread from the list and unparks it. The notifyAll function calls notify until

there are no more threads in the list. The wait function parks the calling thread after

adding it to the list. We use atomic sections to protect the state of the waiters list, but

we do not want to hold the lock whilst the thread is waiting, since this would prevent
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another thread from notifying the condition variable (a form of deadlock). We therefore

use the preempt block to allow other threads to proceed while the thread parks, splitting

the atomic section.

Why did we not just end the atomic section before the park? It is quite desirable to

call wait when inside an atomic section. The park would, in this case, occur during an

atomic section and result in deadlock.

Park/unpark are fundamental constructs used to implement synchronisation primi-

tives such as locks, condition variables, and countdown latches. In Java they are exposed

through the park() and unpark() methods in the Thread class. A thread may sus-

pend itself with the park call, which means it will yield and will not be scheduled again

by the operating system until some other thread speci�cally targets it with the unpark

call. Park/unpark are di�erent to condition variables because they are used on speci�c

threads, whereas condition variables are intended to synchronise the whole system, sus-

pending whatever thread is necessary to achieve this aim. More importantly, park/unpark

use a single element queue, which means that if the unpark statement occurs before the

park statement, it is consumed and the thread is not suspended. This is di�erent to the

semantics of condition variables, where if the notify call occurs before the wait call, it

is lost and the thread remains suspended. This distinction is important because it avoids

a race condition in the code for wait.

The implementation of preempt sections uses the same program analysis as the im-

plementation of atomic sections. A preempt section is represented in an atomic section's

CFG by a black hole node that blocks the propagation of the path graph. This induces

lock releases before the preempt, and acquisitions after it. We have to detect deadlock

and backtrack when re-acquiring the locks after the preempt section, and also handle any

null tests and casts that are required.

We �nally give an example showing a number of features that we have discussed in this

chapter. It shows the black hole node, which represents the preemp section, our treatment
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IntList sharedObject;

ConditionVariable condVar;

atomic {

sharedObject.cargo = 1;

condVar.wait();

sharedObject.cargo = 2;

}

The rest of the code is found in �g. 4.9.

Figure 4.10: CFG of an atomic section that calls wait().

of functions, read/write locks, and early release. Figure 4.10 is the CFG of an atomic

section that called wait between a pair of object accesses. The object, sharedObject is

an instance of a class like IntList from �g. 4.9. We have annotated the edges of the CFG

with the �xed point locks, acquires, and releases. The grey circular node is the black hole

node representing the preempt block in the wait implementation.

The �xed point of the analysis is in italic font, early lock release is in roman font,

e.g., a release of the write lock on this is denoted U(!this). We have omitted redundant

lock acquires and releases. The two this locks in the far right function correspond to

the this variables in the wait function and the converter, which are distinct. In the

implementation they are tagged with their function. The variables _t6 and _t13 are
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temporary variables introduced by the implementation to break down expressions when

forming the CFG.

Preempt blocks seem to be useful in practice and have not received much attention

from other researchers. They are not di�cult to implement in our approach and it seems

likely that they would be no harder to implement as part of other lock inference approaches

or transactional memory. Generally, for a runtime technique where atomic sections are

delimited by calls into a library, it is only necessary to end the current atomic section and

begin a new atomic section at the boundaries of the preempt block. For a static approach

using a CFG, one simply needs to consider a new exit and entry into the atomic section.

4.7 Case Study

To evaluate our lock inference strategy, we need to apply it to some real code. This will

show how well the analysis scales to the kinds of atomic sections seen in practice. It

also suggests whether the extra precision of the analysis is enough to make a practical

di�erence. We can judge this by looking at the inferred locks to see what kind of contention

we can expect at run-time.

4.7.1 AOLserver

Previous work [63, 28] has used the AOLserver [73] source code (which is available for

public download) as a case study for atomic sections. AOLserver is a high performance

HTTP server, written in C, which uses the Tcl scripting language to allow programmers

to extend its functionality, e.g., to serve dynamic content. Although multiple Tcl inter-

preters can be running simultaneously, e.g., to serve multiple clients, they are essentially

independent. The actual concurrency is handled with C code where a shared store is

provided for communication between Tcl interpreters. Thus modules written in the Tcl

scripting language can communicate via a native interface with this centralised shared

memory database.
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The authors of the original work [63] kindly made their modi�ed version of the source

code available to us. The source code was annotated with atomic sections and a form of

guard annotation (which we do not need). This particular code base is attractive �rstly

because real code bases that use atomic sections are rare, and also because the authors

of [28] benchmarked their lock inference algorithm with these atomic sections. Their

approach was very di�erent to ours, and we were interested in comparing the scalability

of their analysis with ours.

The analysis presented thus far in this chapter was implemented as a �nal year under-

graduate project by Khilan Gudka [40]. We now use this implementation to demonstrate

the analysis on real code. The implementation took the form of a compiler/interpreter

for an extended subset of Java, with support for threads, atomic sections, primitive types,

classes, reference types, arrays, inheritance, methods, overloading, sub-typing, dynamic

binding, branches, loops, and return statements. Execution was implemented by rewrit-

ing the AST, so it does not make sense to measure run-time performance. However, one

can measure the execution time of the analysis itself, and also study the inserted locks

to see how �ne-grained they are. The implementation is also capable of drawing, using

GraphViz [27], the CFG for each atomic section annotated with the analysis �xed point

and lock insertion information. We will not present these diagrams here because for large

codes like AOLserver their layout is poor and they are very hard to interpret. However,

they were still very useful for �nding why the analysis inferred the locks that it did.

4.7.2 Porting AOLserver

Since AOLserver is written in C, and the implementation of our analysis was for a Java-

like language, we had to translate the AOLserver code in order to process it. AOLserver is

a large piece of software, so we chose one particular compilation unit, tclvar.c, which the

previous work seemed to �nd most demanding. We analyse atomic sections independently,

so we can judge the scalability of our analysis from a single compilation unit. The
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compilation unit we chose is the implementation of the shared memory database, described

previously. We tried to reproduce the original code as closely as possible. Although it

was written in C, the code had an object-oriented aesthetic and thus slipped quite easily

into a Java-like language. We boxed the primitives when necessary to support passing by

reference, and relocated global functions as methods of a convenient class. Because our

analysis needs to follow function calls inside atomic sections, we also had to implement

a small part of the Tcl API, on which the AOLserver code depended. Some of the Tcl

functions we left as stubs or only partially implemented, but we were careful to reproduce

any accesses the real Tcl API would perform.

The purpose of tclvar.c is to provide an interface into a simple shared memory

database. The operations are called from Tcl code, via a native C interface. The structure

of the database is a hash table of hash tables. The data is thus organised �rst by �module�

then by ��eld�, both of which are string keys. This is just to help script programmers

avoid name clashes with other scripts when they use the database. Many of the operations

available in the tclvar.c API therefore take both module and key, and do something

with the value at that location, such as setting it, retrieving it, deleting it, incrementing

it, etc. If the module or �eld does not exist, some operations create an empty hash table,

and some raise an error, which returns back through the native interface and the user has

to handle in their Tcl script.

The top-level structure of the software is sketched in �g. 4.11. The classes beginning

with Tcl_ are written by us to emulate the behaviour of the Tcl API and were not part

of the original AOLserver code. The dotted lines represent arrays, so the object structure

is actually more like a tree.

The class ServPtr holds the context for the whole server. The Bucket class is just

a wrapper around the Tcl_Hashtable. In the original code it contained a lock but that

has been removed in our version which uses atomic sections instead. It is therefore

now redundant but still present because we wanted to disturb the object graph as little
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Figure 4.11: Top-level diagram of tclvar.c data structures.

as possible. The ServPtr class divides the �rst hash table into many hash tables, by

hashing the module key (the same key used in the hash table, but a di�erent hashing

algorithm) to choose which of these level 1 hash tables to use. This was originally to

allow more concurrency, since each lock (encapsulated in Bucket) would protect only a

subset of key/value pairs in the �rst level of hash tables.

The �rst of the two hash tables uses the module name as a key, and an Array for the

value (the value is actually cast to Object in the Tcl_HashTable implementation since

we do not have generics. The Array class contains the data for a particular module, in

the form of a hash table that maps �eld identi�ers to values, both of which are StringPtr

objects, which represent strings4.

4.7.3 Experiment

There are 11 atomic sections in tclvar.c. We will study a representative sample of

8, in order to see how the lock inference behaves. We refer to the atomic sections by

the name of their enclosing function5. We also omit the pre�x of the function names,

4In the toy language, strings are primitive values and must be boxed in order to be stored in a hash
table.

5The other 3 atomic sections share the same function but are otherwise unremarkable.
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NsTclNsv6. Each atomic section represents an operation that a website script may like to

perform on the shared data. As they are designed to be ultimately called from Tcl code,

the parameters take the form of an untyped Object[] called objv and the state of the

interpreter, interp of type Tcl_Interp. In our version of the code, the latter is used to

store the result of the operation, or the error, to be returned to the Tcl script.

• GetObjCmd: Return the string value at the given module and �eld. Returns error if

module or �eld does not exist.

• SetObjCmd: Set the string value at the given module and �eld. Creates the module

or �eld if necessary. Returns the new value.

• AppendObjCmd: Append the given strings to the value at the given module and �eld.

Creates the module or �eld if necessary. Returns the new value.

• ExistsObjCmd: Tests if the given module and �eld exist.

• LAppendObjCmd: Append the given strings to the list at the given module and �eld (a

list is a specially formatted string in Tcl). Creates the module and �eld if necessary.

Returns the new value.

• IncrObjCmd: Adds 1 to the number (a number is a specially formatted string in Tcl)

at the given module and �eld. Creates the module and �eld if necessary (yielding

the number 1). Returns the new value.

• NamesObjCmd: Returns the list of module names matching a given pattern.

• UnsetObjCmd: Deletes a module or a �eld of a module, depending on the number

of arguments given. Returns error if the module or �eld does not exist.

All of these functions except NamesObjCmd use a function called LockArray, so-called

because it was used to acquire a lock that protected an Array object. With this locking

6The original name of the software was Naviserver.
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code removed, the function's only task is to return an Array given a module name, and

optionally (guided by a Boolean parameter) create the array if it doesn't already exist,

rather than returning an error. There was also a corresponding UnlockArray function

which we have removed altogether.

4.7.4 Results

Although our implementation was naive, using Java data structures to store the analysis

state, we hoped to be able to analyse the AOLserver code fast enough to be practical for

a real compiler. For each atomic section, we recorded how many nodes were present in

the CFG, and how long it took to solve on a P4 3.2GHz CPU with 1GB of RAM, running

the Java Hotspot VM v1.6.0. The results in [28] state 2399 seconds for tclvar.c. Our

total time was approximately 8 seconds. Each atomic section consisted of an average of

250 CFG nodes. The solve time includes the time spent minimising the path graph and

inferring a set of locks at each edge.

The code is quite torturous for a lock inference algorithm, as its object access patterns

are highly unpredictable. It is hard to imagine a worse example to show the merits of lock

inference but that is perhaps to be expected since we chose the compilation unit that the

previous work found most demanding. The good news is that our analysis is much faster

than [28], as it works directly on the CFG without a costly setup phase, and the solving

phase is faster too. Their approach was to reduce the problem into SAT form, and the

constraints were based around aliasing constraints. They typically gave a huge amount

of work to the SAT solver. Our approach is more direct, operating straight on the CFG

of the atomic section. Each atomic section is treated separately, so the time is linear in

the number of atomic sections. Most of the time is spent cloning and garbage collecting,

which suggests that a less wasteful design could get even better performance.

The locks inferred for each atomic section are given in �g. 4.12. Each atomic section

has its own column. For reference, we give the full code for one of the atomic sections, and
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GetObjCmd SetObjCmd AppendObjCmd ExistsObjCmd

(this) (this) (this) (this)
(this.buckets) (this.buckets) (this.buckets) (this.buckets)

(objv) (objv) (objv)
(interp) (interp) (!interp)

(!interp.result) (!interp.result)
Array R R R R
Bucket R R R R

StringPtr R R W R
Tcl_HashEntry [W] W W [W]

Tcl_HashEntry[] [W] W W [W]
Tcl_HashTable [W] W W [W]

LAppendObjCmd IncrObjCmd NamesObjCmd UnsetObjCmd

(this) (this) (bucketPtr) (this)
(this.buckets) (this.buckets) i(bucketPtr.arrays) (this.buckets)

(objv) (objv) bucketPtr.arrays.buckets (objv)
(!interp) (interp) (interp) (interp)

(!interp.result) (!result) (!interp.result)
(countPtr)

Array R R R
Bucket R R R

StringPtr W R R
Tcl_HashEntry W W R W

Tcl_HashEntry[] W W W
Tcl_HashTable W W W

Figure 4.12: Locks inferred by our analysis to the AOLserver tclvar.c fragment

the aforementioned LockArray function, in �g. 4.13 and �g. 4.14, which can be compared

to the locks given in the �rst column of �g. 4.12. At the top of the column are given

the paths that were locked, and at the bottom the types that were locked. Write path

locks are denoted with an exclamation mark, and we distinguish between read and write

locks of types using R or W respectively. The parentheses and square brackets will be

explained shortly. We now explain what aspects of the code are responsible for causing

these locks to be inferred.

We infer a type lock when we do not know which objects were touched (only their

type). As discussed earlier, this is caused by either an iteration over an object graph

or an array access through an unknown index. This case study is particularly torturous

because both kinds occur: The hash table contains an array of entries, and the key is

hashed to form an index into this array. Furthermore, at this index is a linked list that

must be searched for the right key. For this reason we see a lot of accesses being guarded

with type locks. However as expected with early unlocking, these big locks are released as

soon as the speci�c object is known. We do not show explicitly where the early unlocking
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class ServPtr {

...

int GetObjCmd (Tcl_Interp interp, Object[] objv) {

if (objv.length != 3) {

interp.Tcl_WrongNumArgs(1, objv, "array key");

return interp.TCL_ERROR;

}

Tcl_HashEntry hPtr;

Object objv1 = objv[1];

Object objv2 = objv[2];

atomic {

Array arrayPtr = this.LockArray(interp, objv1, false);

if (arrayPtr == null) {

return interp.TCL_ERROR;

}

StringPtr key = (StringPtr)objv2;

hPtr = arrayPtr.vars.Tcl_FindHashEntry(key.s);

if (hPtr != null) {

StringPtr val = (StringPtr)hPtr.val;

interp.Tcl_SetStringObj(interp.Tcl_GetObjResult(),val.s);

}

}

if (hPtr == null) {

string[] args = new string[2];

args[0] = "no such key: ";

args[1] = interp.Tcl_GetString(objv[2]);

interp.Tcl_AppendResult(args);

return interp.TCL_ERROR;

}

return interp.TCL_OK;

}

}

Figure 4.13: The GetObjCmd function written in our toy language.



CHAPTER 4. LOCK INFERENCE 140

class ServPtr {

Bucket[] buckets;

Array LockArray(Tcl_Interp interp, Object arrayObj, bool create)

{

StringPtr arrayObj2 = (StringPtr)arrayObj;

string array = arrayObj2.s;

int hash = 0;

int i = 0;

while (i<array.length) {

hash = hash + (hash*2*2*2) + array[i];

i++;

}

hash = hash % this.buckets.length;

Bucket bucketPtr = this.buckets[hash];

Array arrayPtr;

if (create) {

BoolPtr nu = new BoolPtr();

Tcl_HashEntry hPtr =

bucketPtr.arrays.Tcl_CreateHashEntry(array, nu);

if (!nu.b) {

arrayPtr = (Array)hPtr.val;

} else {

arrayPtr = new Array(bucketPtr,hPtr);

hPtr.val = arrayPtr;

}

} else {

Tcl_HashEntry hPtr = bucketPtr.arrays.Tcl_FindHashEntry(array);

if (hPtr == null) {

if (interp != null) {

string[] args = new string[2];

args[0] = "no such array: ";

args[1] = array;

interp.Tcl_AppendResult(args);

}

return null;

}

arrayPtr = (Array)hPtr.val;

}

return arrayPtr;

}

...

}

Figure 4.14: The LockArray function, also in class ServPtr.
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occurs because it makes the code quite unpresentable.

Let us examine the atomic section in GetObjCmd and the locks inferred for it. The

Bucket and Array classes are selected from the buckets array of ServPtr by the function

LockArray using a hash on the module name, which is why they have type locks. There

is also a hash of the module name for looking up the actual table corresponding to the

module in the Array's hash table, so we see classes of the hash table implementation

being locked by class. Finally the �eld name is hashed to �nd the hash entry in the

module hash table to extract the desired value. This object is accessed (after being cast

to a StringPtr) indirectly through a computed array index, hence the locking of the

StringPtr class.

The GetObjCmd operation ought to be a read-only operation. However because the

LockArray function is generalised, and can also modify the hash table if called with a pa-

rameter of true, the analysis conservatively infers write locks. This could be �xed using

some combination of inlining, constant propagation, and dead code elimination before

running our analysis. We were able to test this hypothesis by doing this optimisation

manually. We added the function LockArrayFalse that did not have this Boolean pa-

rameter and omitted the true side of the branch. The e�ect on GetObjCmd was that

the three write type locks turned into read type locks. We did the same transformation

for the other atomic sections and the write locks that became read locks are denoted in

�g. 4.12 with square brackets.

There are also some path locks, in fact all of which are redundant. The locks of this

and this.buckets are redundant because in a real implementation these accesses are to

immutable �elds or array elements, and the analysis would therefore not infer any locks

to protect them. The parentheses denote locks that are redundant, providing no safety

and causing no contention. The interp variable is a pointer to the Tcl interpreter which

is interpreting the Tcl script that requested the operation. As such it is thread local, so is

also redundant. The interp.result access corresponds to setting the result string to be



CHAPTER 4. LOCK INFERENCE 142

received by the Tcl script. The result string is also thread local. Note that the omission

of objv1 and objv2 is both deliberate and correct � as they are accessed after being

cast to StringPtr, their accesses are protected by the type lock StringPtr. Although

interp.result is also a StringPtr, its write lock is not subsumed by the read lock on

StringPtr.

The NamesObjCmd operation is very di�erent, because it only descends into the �rst

hash table. As such, it does not use LockArray and therefore does not su�er from the

problem discussed earlier, where LockArray is called with a false argument, but the

analysis still infers locks for the true branch of the conditional within. Consequently the

inferred locks of NamesObjCmd are much more accurate. The type lock on Tcl_HashEntry

is still required, however, as we are iterating over the array within the hash table, and

the hash entries within.

The other atomic sections are similar to GetObjCmd. There are some minor di�erences,

such as extra redundant locks of thread local variables in e.g., IncrObjCmd. The extra

type lock of StringPtr in the two append functions is due to their modifying the string

within the StringPtr that was stored in the hash table. It would be possible to refactor

the code to avoid this.

4.7.5 Evaluation and Future Directions

The analysis worked, and inferred locks in reasonable time given that this was not an

optimised implementation. One critical question that remains is run-time performance.

We cannot benchmark this code with this run-time since the language has only a naive

interpreter and any results would be meaningless. Khilan Gudka is working on a real

implementation, inferring locks at the JVM bytecode level. Thus, we expect getting real

performance numbers to be practical in the near future. We can however hypothesise

about performance already, given the results of the analysis.

There are two axes along which we can discuss performance. We can talk about serial
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performance, which is impeded by the insertion of a lot of extra instructions. Perhaps

more importantly we can talk about contention, the serialisation of atomic sections that

may need to run in parallel. Contention is determined by the kinds of locks we insert.

Despite analysing atomic sections with hundreds of CFG nodes, we have only inferred

a handful of locks. If we remove the locks protecting accesses of read-only and thread

local state, the overhead should be very small indeed. The former is easy to do because

�nal �elds are well-understood. The latter would require a thread-local type system of

some sort, which would be a direction for future research.

Removing redundant locks does not a�ect contention, because these locks were not

introducing any actual synchronisation. In the case of �nal �elds, this is because only

read locks are ever taken. In the case of thread-local state, no other thread participates

in the lock. It is the non-redundant locks that therefore de�ne the contention.

We mentioned earlier how we were able to avoid over-conservative write locks in

GetObjCmd by specialising the LockArray function in the case where a Boolean parameter

was false, thus allowing the removal of dead code. Any removal of dead code has the

potential to help this analysis infer fewer locks, so a real implementation should order the

compiler passes to take advantage of this.

All this taken into account, our inferred locks have the property that the atomic

sections GetObjCmd, ExistsObjCmd, and NamesObjCmd can run in parallel. However all of

the other atomic sections will run in series.

Let us now compare the inferred locks with the locking strategy of the original code.

Consider �rst that the original code was hand-written and thus could contain race con-

ditions and deadlocks if the programmer did not invest signi�cant care and attention.

The locking strategy was that a lock was associated with each Bucket object. This lock

protected all of the objects in the bucket, which includes the hash table that hold the

modules who share a hash on their names, the hash entries within this hash table, the

Array objects representing each module (which were stored in the hash table), the hash
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table encapsulated by the Array object and so on down the the individual StringPtr ob-

jects at the leaves of this tree. This meant that any two operations would run in parallel

if their module names did not hash to the same thing. On the other hand, the lock used

was not a read/write lock so reads of the same hash table would not be allowed to run in

parallel.

Summarising these di�erences, we have more locks, we have read/write locks, in the

case of two read operations on the same module name we permit more parallelism. But in

the case of two writes on modules names that hash di�erently we have less parallelism. Let

us not forget that unlike the hand-written code, our locks are guaranteed to be correct.

But let us imagine what would need to be done to cause our analysis to infer locks that

allow at least as much parallelism as the manually-written code found in AOLserver.

The most obvious improvement is to eliminate our type locks and use instance locks

instead. How is this possible given the unpredictable and unbounded access patterns in

these atomic sections? Let us look at each type lock in the GetObjCmd column of �g. 4.12

in turn.

The lock of the Bucket type is caused by the access of a bucket that was looked up

in an array using an index computed by taking the hash of a string. The hand-written

code solved this problem by computing the hash and �nding the bucket before taking any

locks. This works because the string is thread-local, and the bucket array was constant so

needed no protection. The hash was calculated and the bucket found by the LockArray

function. Of course since the original code stored the lock implementation within the

bucket, there was no way it could take this lock before �rst locating the correct bucket.

In our transcription of this code, we begin our atomic section before the call to

LockArray, thus have subsumed the hash and array lookup operations in the atomic

section and have thus generated locks to protect these thread-local accesses. Such locks

are not actually the source of the problem, they are redundant because system-wide only

read locks are taken. The source of the problem is that now the bucket, which is later
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accessed, is not available in a variable at the beginning of the atomic section. Its access

exists in the path graph beyond an array access edge.

If we were to move the hash and array lookup out of the atomic section, would it

remove the Bucket lock? Fortunately we do not need to perform this experiment because

the NamesObjCmd atomic section already does this. Correspondingly we see no Bucket

lock in the NamesObjCmd column but there is a lock of bucketPtr, which is the variable

containing the precise bucket that will be accessed.

Can the programmer perform this optimisation manually by re-arranging code and

moving array lookups out of the atomic section? In the case of LockArray this requires

the atomic section to begin in a di�erent function to where it ends. There would then

need to be a pair of statements rather than a syntactic construct to delimit the atomic

section. This is analogous to the di�erence between lock / unlock functions and Java's

synchronized block.

Can we automatically hoist the hash calculation and array access out of the atomic

section? Firstly, hoisting code out of the atomic section is only safe if the code does not

perform any accesses of shared memory, so we would need some static notion of thread

safety, e.g., a type system, in order to know when such an optimisation is possible. The

original handwritten code happens to have this property but there was no static checking

to ensure this was the case. In this case we have code that computes a hash of a string,

therefore accessing the string, and also an array accesses. To ensure these accesses need

no protection, a type system would give us the information that the string we are hashing

and the array being indexed are not able to be modi�ed by other threads. The array is

constant in AOLserver, giving us this property, although this is not expressible in many

type systems including Java. For the string, the language could have constant strings or

the type system could establish that the string was thread-local, either of which would

be acceptable within AOLserver. In general we can (if known) move any thread-local

or constant memory accesses out of the atomic section, which would make the analysis
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infer fewer locks, give a better precision for the remaining accesses (as with this bucket

example) and also reduce the amount of time spent holding locks.

In fact if we had the array support described earlier (�4.6) then we only need the

programmer to manually hoist out the hash calculation. We would then lock the indi-

vidual array element because the index would be known, i.e., bound to a variable, at

the beginning of the atomic section where the locks were being taken. The array lookup

would be statically known, and thus could be treated like a �eld lookup. Note that if the

hash calculation were trivial and the arithmetic involved could be statically understood

by our analysis, we would need no more machinery than the techniques discussed already

in this chapter. However for a hash function this would be very unlikely, as the meaning

of the arithmetic that de�nes a hash is very obscure.

We now know how to get rid of the Bucket lock but GetObjCmd has �ve more type

locks that will still restrict concurrency. The Bucket instance contains a hash table that

we then look up to get a Array object that contains a second hash table, which we also

look up to get a string, which is then examined. These computed indexes lead to the

locking of all �ve of the remaining type locks found in the �rst column of �g. 4.12. We do

not know exactly which of these objects were accessed so we opted to lock all objects of

the same types. Again, let us look to the original code to see how it avoids this problem.

The lock in the Bucket instance does not just protect the bucket but also the other objects

logically contained within. This includes all of the objects that may be accessed but is

not so comprehensive as to include all the objects that happen to have the same type as

the accessed objects. This is the source of the extra parallelism in the manually written

code. The scope of the bucket lock is limited to one subtree of the whole structure,

rooted at the particular bucket, and thus operations on di�erent buckets may proceed

in parallel. Again, this only works because the code obeys an unchecked property: The

objects under the bucket must not be aliased from under another bucket, or there would

be a race condition where two threads perform operations on di�erent buckets but access
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the same state.

We would like to be assured that such a containment property holds before we exploit

it automatically. In fact, we have already seen type systems that expresses containment

in the form of universe types (�3) and other ownership type systems. Can we express the

manual locking discipline in the form of our race safety type system? Firstly we would

express the containment of all the state inside a Bucket by using a rep annotation on the

arrays �eld of the bucket and peer annotations for the references beneath. This prevents

the kinds of aliases just discussed because a rep of one bucket is distinct in the type

system from a rep of another bucket. Now how could we modify our analysis to make

use of this information? It is in fact just the lock inference stage rather than the path

graph analysis that needs to be changed, and only slightly. We are still using the type of

an access to protect it if the exact object is unknown. The di�erence is that if we have a

universe type system we have a more precise type that represents a much smaller set of

objects. In fact it represents exactly the set of objects we want the lock to protect. So it

seems that if we were to augment the toy language with a universe type system or indeed

any ownership type system then we could infer not just the same locks as the manually

written code, but better locks admitting more parallelism. The extra parallelism comes

from the read/write locks that would allow two operations on the same bucket to proceed

in parallel if they are both reads, something that the original code lacked.

There is still a question of whether we should keep using the standard Java class types

to de�ne locking domains as well as using the universe types for the same purpose. In

other words rather than just locking all objects owned by a particular object, should we

additionally restrict the lock to those objects that are sub-types of a particular class? In

the case of AOLserver this would not be very bene�cial as we would just infer several locks

to protect the objects under the bucket instead of one lock. This would add sequential

overhead and in this case gives us no extra parallelism since most of the atomic sections

in tclvar.c are operating on objects of the same set of types. Further exploration of real
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code is needed, but it seems like a better system would be to use only the ownership part

of the type to de�ne locking domains.

If we have an ownership type system, we can also try and use it to de�ne thread

locality. Instead of saying an object is owned by some other object, we can have an object

being owned by some thread-local owner instead. This would mean the object would not

need to be locked, and would facilitate the optimisations previously mentioned. But in

order to be correct, we would have to ensure these objects are not passed inadvertently

to other threads. This is left as future work.

4.8 Chapter Summary

We introduced this chapter by suggesting that rather than the programmer adding their

own locks, whose correctness are enforced automatically, it is better for the system to

handle these details, leaving the programmer only to specify where the atomic sections

should be. We have summarised some of the related work in this area and identi�ed

some areas that we suggested were lacking. These were the run-time performance of

software transactional memory and its lack of support for I/O, and also the lack of

precision of existing lock inference approaches. We then gave an analysis that is more

precise, especially in the case of loops. We formalised this analysis and proved that the

accesses inferred were a conservative approximation of those occurring at run-time. The

formalisation and proof were developed in Isabelle.

We gave a scheme by which we use the knowledge of what accesses will occur to

insert locks into the code that follow the two-phase protocol. We suggested using run-

time deadlock detection to avoid coarsening the locking strategy. We then showed how

the analysis could be extended to more high-level language features, particularly arrays,

casts and message passing idioms. We demonstrated an implementation of the analysis by

running it on code from a production web server, used in some of the previous work. We

presented the inferred locks but were unable to measure run-time performance. We did
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some manual optimisations to improve the quality of the locks, by avoiding conservatism

in the analysis. Finally, we made several suggestions about further optimisations that

could bring the quality of the locks in line with and beyond that which were used by the

programmers who originally wrote AOLserver.



Chapter 5

Conclusions and Further Work

Earlier (�2) we made the claim that the fundamental property in which programmers

should be interested is atomicity. The techniques discussed were designed to help pro-

grammers get the atomicity they want, assuming they know when and where they want

it. It is appropriate now to assess the extent to which we have moved the state of the

art towards this objective, what remains to be done, and whether we can get there by

building upon this work.

5.1 Summary

We asserted at an early stage (�2) that techniques that did not require having to roll

back arbitrary code were likely to perform better at run-time. We thus chose to use the

two-phase locking protocol. We left deadlock avoidance to the programmer with our lock

checking work (�3) and later in our lock inference work (�4) we exploited the property

that locks are acquired together to solve deadlock using a simple rollback strategy.

After requiring programmers to choose which blocks they wanted to be atomic. We

then proposed either checking programmer-inserted locks for adherence to the two-phase

discipline (�3), or automatically inserting two-phase locks (�4). We expected that auto-

matically inserting locks would be harder than checking locks, and thus we would be able

150



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 151

to make more progress doing the latter. However there were some surprises. Firstly, we

can insert locks that are not lexically scoped, because the only bene�t of lexical scoping

is that it prevents the programmer forgetting an unlock statement. This gave us more

�exibility to release locks early.

Secondly, we acquire all the locks together at the beginning of the atomic section,

whereas if the programmer is in control they can put the locks wherever they like. This

allowed us to solve the deadlock problem, which we could not do for the programmer-

inserted locks. We can avoid deadlock without coarsening the lock granularity, which is

a property that no other lock inference approach (�4.2) seems to have.

Combining these advantages with the obvious advantage that it's more work for the

programmer to insert locks themselves, makes the future look much brighter for lock

inference than lock checking. However many of the techniques and lessons learnt from

the universe types and race safety type systems (�3) are very relevant to lock inference.

In fact the central role of paths and path graphs in our lock inference was inspired by

the paths in our race safety type system used to reason about sync p e where p had type

ANY. Ownership types of one form or another are likely to always play an important role

in concurrency, as they allow us to express the relationship between objects in a static

and precise way. We earlier (�4.7) advocated their use in the AOLserver code to allow

inferring locks of a similar quality to those used in the original hand-written code.

We also suggested that ownership type systems such as universe types can also be

used for expressing thread-locality, through the use of a special `thread local' owner. This

interacts nicely with ownership type parameters, or in the case of universe types, the

peer modi�er, to allow the programmer to build reusable data structures that can be

deployed in both thread-local and shared memory contexts. However there would have

to be additional static checking to make sure thread-local objects were not accessed from

other threads. Ownership types and universe types do not di�erentiate between threads.

Looking forward, we think the best direction in which to proceed is to extend universe
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types with notions of thread locality and use them as the base language for our lock

inference work. We do not expect any surprises integrating universe types with lock

inference but the thread-locality aspect is a major unknown, requiring careful study.

Thread local types would have applications beyond our own work, for instance they may

be useful as a general safety check, for accelerating transactions, or for allowing re-ordering

of accesses within the constraints of a strong memory model.

5.2 Evaluation

Suppose we use our intuitions gained from our lock checking work to in�uence the direction

our lock inference work should next take. Suppose we imagine that the AOLserver code

is compiled, and its atomic sections are implemented with inferred locks of a similar or

better quality to the original hand-written locks. Is this enough? Is such a fusion of

proven techniques (�3) (�4) combined with a notion of thread locality suitable to form

the heart of a modern concurrent object-oriented language?

There are three potential problems. We must make sure our language is expressive

enough, i.e., does not reject too many programs, and does not have too much bureaucracy

in the form of type annotations. We must also ensure that the compile time is reasonable,

especially since compilation is more and more taking place in JIT compilers. Finally, run-

time must be comparable to hand-written code, given the advantages of an automatic

approach.

5.2.1 Expressiveness

The most interesting feature of our race safety type system, in terms of expressivenes,

is the use of any to represent an unknown owner. This allowed programs to be written

that the related work could not support. In addition there was no need to use �nal �elds

in paths, but in practice one can work around this by de�ning �nal local variables and

evaluating the path before the sync block. In future we would drop this feature as the
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required e�ects system causes us to restrict inheritance or loses us separate compilation.

However we believe there is a strong case for any, or at least some similar method of

introducing subtyping into ownership. In principle we are more expressive as we allow

the programmer to specify the inserted locks. However, there is no way to solve the

problem of deadlock, as we did in the lock inference algorithm. So in practice the locks

are still not expressive enough. The locks used internally in our lock inference work are

much more expressive, but are hidden from the programmer.

Currently our lock inference analysis does not reject any programs in the toy language.

It can handle whatever the programmer throws at it. In general though, program analyses

have big problems with re�ection, because it becomes very hard to statically discover even

the type of what was accessed. With methods called via re�ection, we have no idea what

code will be executed. We have a number of options, however. We can fall back to a

single global lock in these instances. We can try and use pointer analysis to discover

what is actually accessed, although we cannot in general get back everything. Also it

is possible that many of the uses of re�ection could be satis�ed by providing a more

restricted language construct that we could hope to statically understand, e.g. the ability

to iterate over the �elds of an object. Taking all of this into account, and comparing to

transactional memory, which prevents the use of I/O in atomic sections, we believe we

have a reasonably expressive system.

In terms of bureaucracy, we expect that we will need some form of ownership types to

make lock inference practical, and some extension to allow the speci�cation and checking

of thread locality, but that there will be no need for other annotations. So clearly these

annotations must be either reasonably light-weight or inferred. Ownership inference is

quite hard and we have no reason to believe that thread-locality inference is easy either,

but what constitutes light-weight annotations? We believe programmers do not mind

annotations if they are helping to document the code in some way or giving them some

degree of control, and are not just banal. In other words are the annotations useful for
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programmers or do they just get in the way?

Thread locality is a very important part of the design of concurrent software, and

many bugs are introduced by mistakenly thinking an object is thread-local when it is not.

It is thus common for people to document which objects are shared and the locks that

protect them, in order to help avoid such mistakes. By providing a system of annotations

for these same concepts, it will not only help the programmer ensure the documentation

is present and correct, but will also help to infer better locks. Also the ownership types,

if used to specify which lock guards which object, give the programmer a great deal of

control in terms of granularity (�2.6). This may be important for getting the desired

level of performance out of the program. So in both cases we think these annotations are

justi�ed for a real language. Of course it remains to de�ne an actual type system and try

to use it to express some existing real code like we did with AOLserver.

5.2.2 Scalability

Correctness of concurrency, in particular lock inference, is very sensitive to the behaviour

of code in non-local parts of the program. For this reason it does not mesh well with

separate compilation where only the signature of code is known, not the code's complete

behaviour. For this reason we must infer locks at link time where the whole program is

known. In today's languages where plug-ins are allowed, some of the code may not even

exist until the program has already started executing.

For example, the program might load a new class that extends an existing class, and

we would then have to consider the possibility of polymorphic dispatch into the new

methods from an existing atomic section. For this we would have to re-infer locks for

that atomic section taking the new branch of the CFG into account. There is also a

trend towards JIT compilers that have advantages in adaptive optimisation and allow the

distribution of portable byte-code. These facts motivate an approach that can support

inferring locks at run-time.
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It is therefore very important that the analysis itself can be implemented e�ciently.

There is one major hurdle to overcome, and this is perhaps the biggest weakness of all

the work presented thus far. Since we have to analyse deep into functions, there is the

possibility of the CFG of an atomic section growing very large. Even if there is a large

amount of lazy initialisation code that does not get executed, it still has to be analysed

and locks inserted. For instance the System.out.println() method conservatively calls

thousands of methods, although it typically will not call these on the majority of invo-

cations. Since a big CFG means lots of edges, and we have to do work at each edge,

we expect the performance to be at least linear in the size of the CFG. Because more

code implies usually more accesses, the amount of work per edge (in terms of translating

the path graph) is likely to increase as well. This in itself implies our approach is not

scalable in the sense that just blindly calling into a library in an atomic section can create

problems.

How can we address this? One solution is to try and analyse functions independently

and then combine the result. This allows re-use of the analysis result of a particular

function in all the places where it is called. We expect this to help but there is still the

possibility of path graphs becoming very large. Thus scalability would still become a

problem. We would like some mechanism whereby subgraphs of the path graphs could

be somehow abstracted or otherwise hidden, and manipulated opaquely. However it is

not yet clear how this can be done. A �nal alternative is to ensure that code bloat is

kept under control, perhaps by not using lazy initialisation and other tricks that, while

e�cient at run-time, result in a large static call-graph.

An interesting area of future work is the ability to incrementally analyse and infer

locks for a particular atomic section. Just like one can invest progressively more work

into analysing a block of code for general optimisation, so that the hottest code receives

more attention, one could imagine the same being done for atomic sections. For example,

each atomic section would initially use a giant global lock, but when executed frequently



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 156

would be re-analysed, so that the most commonly executed atomic sections receive �ne

grain locks but they need not all be analysed to the full extent. This could help a lot

with scalability.

5.2.3 Performance

Multi-threaded programming is used to get better performance, and even if there are

surplus cores single-threaded performance is still important due to Amdahl's law. However

we have not got any �rm performance numbers that support the decisions we've made and

this is a valid criticism of our work. This is because the toy language implementation was

not suitable for doing performance analysis. A real implementation is a substantial piece

of work in its own right. Khilan Gudka has made progress in this direction, developing a

system for analysing and inserting locks into JVM bytecode.

Other than the inferred locks, which we can compare in terms of number and granular-

ity to handwritten code, one potential source of performance degradation is our deadlock

detection / rollback approach. However we expect this to not degrade performance signif-

icantly, a claim that we base on our experience that deadlock is actually rare at run-time,

especially if the lock acquisitions are close together. Because deadlock can only occur

when both threads are in their lock acquisition phases, the time period in which a dead-

lock is possible is very small. Increasing the number of threads, decreasing the number

of locks in the system, increasing the number of locks acquired by a particular atomic

section, and decreasing the amount of time spent in the body of the atomic section would

all increase the probability of deadlock and might force a performance problem. It would

be interesting to write micro-benchmarks to explore how hard it is to write code that

triggers enough deadlocks to cause a signi�cant performance degradation.

One interesting area of future work, to which we have given very little consideration,

is the interaction of atomic sections implemented with lock inference with manually-

synchronised code. This might be useful for integrating libraries into an application, or for
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incrementally introducing atomic sections into an existing code base. A more compelling

reason would be for specially hand-written high performance data structures, such as

hash tables, trees, and linked lists. Taking advantage of these special cases one can write

much faster code than allows more parallelism than the locks we can infer. While the

operations on these data structures are atomic by themselves, it is sometimes necessary

to use these operations within another atomic section, e.g., removing an object from a

list and then modifying the object. It may be possible to infer better synchronisation,

perhaps with help from the author of the data structure, than we would do using our

usual lock inference.

5.3 Future Case Studies

There are some interesting questions about the potential usage of atomic sections and

thread-locality in practice. It would be interesting to �nd out, for a selection of large real

applications using shared memory atomic sections: How many atomic sections there are

and how large they are. What percentage of code is executed from atomic sections? What

percentage of running time is spent in atomic sections? What percentage of classes are

shared compared to thread-local, and what percentage of actual instances. It would also

be interesting to see if there is much di�erence between various applications in terms of

these metrics. This kind of information would help us make decisions about performance

and expressiveness when designing programming languages for concurrency.

5.4 Final Words

We have outlined a pair of novel approaches for implementing atomic sections by locking

the appropriate objects for the duration of the atomic section. This may outperform the

existing transactional implementations due to less instrumentation of code, and outper-

form existing lock inference approaches by providing more granularity. We also cause

less inconvenience to the programmer since I/O is possible in an atomic section. Using
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universe types for race safety is novel and using �eld e�ect sets to protect paths from

interference we had not seen before. We proved that the type system guaranteed race

safety but left the extensions that required two-phase locking unproven, because we felt

there were no new ideas.

Our path graph analysis for inferring accesses is novel and has considerable precision.

We proved it correct using Isabelle. We gave a scheme whereby the accesses can be

turned into locks. Although deadlock detection is not a new idea, we believe we are the

�rst to apply it to lock inference. Through applying the inference to a real code base

we discovered we are unable to make use of all the precision of the path graph analysis

without some kind of ownership type system such as the universe type system we used for

race safety. Also we would like a thread-local type system to further improve the quality

of inferred locks.

In the past, programmers have typically been so scared by threads that even when

writing servers that are processing many requests in parallel, they have opted for event

loops [74] and other co-operative threading approaches that o�er some of the advantages

of threads, without any of the potential errors. However these allow no parallelism and

we are approaching an era where CPU clock rates can no longer meet the computational

demands of our software [80]. Programmers need new language features to replace locks

and help them write sophisticated, multi-threaded programs. These features must have

intuitive semantics, and an e�cient parallel implementation. Moreover, programmers

should be able to make use of encapsulation and composition, and program behaviour

must remain intuitive when programs are scaled in this fashion. We hope that the work

presented in this thesis helps to address these concerns.



Appendix A

Proofs of Race Safety

We use IH as an abbreviation for �induction hypothesis�. The symbol � indicates the end
of a sub-proof, and � a whole theorem/lemma.

Lemma 3.6.1 The e�ects of well-typed expressions do not undermine their locks.

L,Γ ` e : F =⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

Let L,Γ ` e : f (1)

case (1) last was (Sub) (2)
(2) ⇒ L#F,∀p ∈ L.L,Γ ` p : _

case (1) last was (Var) (This) (Null) (New) (Spawn) (2)
(2) ⇒ L = ∅ (3)

F = ∅ (4)
(3)+(4) ⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

case (1) last was (Field) (2)
(2) ⇒ e = e′.f (3)

L,Γ ` e′ : F (4)
(4)+IH ⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

case (1) last was (Assign) (2)
(2) ⇒ e = e′ := e′′ (3)

L,Γ ` e′ : F (4)
(4)+IH ⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

case (1) last was (Sync) (2)
(2) ⇒ e = sync e′ e′′ (3)

L,Γ ` e′ : F (4)
(4) + IH ⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

case (1) last was (Call) (2)
(2) ⇒ e = e′.m(e′′) (3)

L,Γ ` e′ : F (4)
(4)+IH ⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

case (1) last was (Cast) (2)
(2) ⇒ e = (t)e′ (3)

L,Γ ` e′ : F (4)
(4)+IH ⇒ L#F ∧ ∀p ∈ L : L,Γ ` p : _

�
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Lemma 3.6.2 Static race safety implies run-time race safety.

L,Γ ` e : F
h, σ ` x : Γ(x)
h, σ ` this : Γ(this)

 =⇒ L, h, σ ` S(e) : F
V irgin(S(e))

Let L,Γ ` e : F (1)
h, σ ` x : Γ(x) (2)
h, σ ` this : Γ(this) (3)

case (1) last was (Null) (Var) (This) (New) (4)
(4) ⇒ L = ∅ (5)

F = ∅ (6)
e ∈ {x, this, new t, null} (7)

(7) ⇒ V irgin(e) (8)
e = S(e) (9)

(8)+(9) ⇒ V irgin(S(e))
(5)+(6)+(7) ⇒ ∀h, σ : L, h, σ ` e : F (10)
(10)+(9) ⇒ L, h, σ ` S(e) : F

case (1) last was (Cast) (4)
(4) ⇒ e = (t)e′ (5)

L,Γ ` e′ : F (6)
(6)+(2)+(3)+IH ⇒ L, h, σ ` S(e′) : F (7)

V irgin(S(e′)) (8)
(5) ⇒ S(e) = (t)S(e′) (9)
(9)+(7)+(Cast) ⇒ L, h, σ ` S(e) : F
(9)+(8) ⇒ V irgin(S(e))

case (1) last was (Spawn) (4)
(4) ⇒ e = spawn e′ (5)

L = ∅ (6)
F = ∅ (7)
∅,Γ ` e′ : _ (8)

(5) ⇒ S(e) = spawn S(e′) (9)
(8)+(2)+(3)+IH ⇒ ∅, h, σ ` S(e′) : ∅ (10)

V irgin(S(e′)) (11)
(10)+(6)+(7)+(9)+(Spawn) ⇒ L, h, σ ` S(e) : F
(11)+(9) ⇒ V irgin(S(e))

case (1) last was (Field) (4)
(4) ⇒ e = e′.f (5)

L,Γ ` e′ : F (6)
Γ `gb e

′ : l (7)
l ∈ L (8)

(5) ⇒ S(e′).f = S(e) (9)
(6)+(2)+(3)+IH ⇒ L, , σ ` S(e; ) : F (10)

V irgin(e′) (11)
(7)+(2)+(3)+Lemma A29 ⇒ h, σ `gb S(e′) : l (12)
(8)+(9)+(10)+12)+(Field) ⇒ L, h, σ ` S(e) : F
(11)+(9) ⇒ V irgin(S(e))

case (1) last was (Assign) (4)
Same as (Field)

case (1) last was (Sync) (4)
(4) ⇒ e = sync e′ e′′ (5)

L,Γ ` e′ : F (6)
Γ `gb e

′ : l (7)
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l ∈ L (8)
L ∪ {l},Γ ` e′′ : F (9)

(9)+(6)+(2)+(3)+IH ⇒ L, h, σ ` S(e′) : F (10)
L ∪ {l}, h, σ ` S(e′′) : F (11)
V irgin(S(e′)) (12)
V irgin(S(e′′)) (13)

(5) ⇒ syncedS(e′) S(e′) S(e′′) (14)

(7)+(2)+(3)+Lemma A29 ⇒ h, σ `gb S(e′) : l (15)
(15)+(15)+(10)+(10)+(11)+(14)+(Sync) ⇒ L, h, σ ` S(e) : F
(12)+(13)+(14) ⇒ V irgin(S(e))

case (1) last was (Sub) (4)
(4) ⇒ L,Γ ` e : F ′ (5)

L′ ⊆ L (6)
F ′ ⊆ F (7)
L#F (8)
∀p ∈ L : L,Γ ` p : _ (9)

(5)+(2)+(3)+IH ⇒ L′, h, σ ` S(e) : F ′ (10)
V irgin(S(e))

(9)+(2)+(3)+IH ⇒ ∀p ∈ L : L, h, σ ` p : _ (11)
(11)+(6)+(7)+(8)+(12)+(Sub) ⇒ L, h, σ ` S(e) : F

case (1) last was (Call) (4)
(4) ⇒ e = e′.m(e′′) (5)

L,Γ ` e′ : F (6)
L,Γ ` e′′ : F (7)
Γ ` e′ : u c (8)
Eff (c,m)↓2 ⊆ F (9)
L′ ∈ Eff (c,m)↓1 (10)
(u, e′, e′′) L′ ⊆ L (11)

(6)+(2)+(3)+IH ⇒ L, h, σ ` S(e′) : F (12)
V irgin(S(e′)) (12b)

(7)+(2)+(3)+IH ⇒ L, h, σ ` S(e′′) : F (13)
V irgin(S(e′′)) (13b)

(8)+(2)+(3)+Lemma 3.5.5 ⇒ h, σ ` S(e′) : u c (14)
(11)+(2)+(3)+Lemma A30 ⇒ (h, σ, u, S(e′), S(e′′)) L′ ⊆ L (15)
(5) ⇒ S(e) = S(e′).m(S(e′′)) (16)
(16)+(12)+(13)+(14)+(15)+(Call) ⇒ L, h, σ ` S(e) : F
(12b)+(13b)+(16) ⇒ V irgin(S(e))

�
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Lemma 3.6.3 Path resolution is preserved over execution.

h(σ, p) = v
σ ` p, h e, h′

}
=⇒

e = p′, h = h′

h′(σ, p′) = v
∀f /∈ p : f /∈ p′

Let h(σ, p) = v (1)
σ ` p, h e, h′ (2)

case (2) last was (Cast) (Assign) (Frame1) (Frame2) (Call) (New) (3)
Contradicts p being a path

case (2) last was (Var) (3)
(3) ⇒ v = σ(x) (4)

e = v = p′ (5)
h = h′ (6)

(4)+(5)+(6) ⇒ h′(σ, p′) = v
(5) ⇒ ∀f : f /∈ p′ (7)
(7) ⇒ ∀f /∈ p : f /∈ p′

case (2) last was (This) (3)
Same as (Var)

case (2) last was (Ctx) (3)
(3) ⇒ p = E[e′] (4)

e = E[e′′] (5)
σ ` e′, h e′′, h′ (6)

(4) ⇒ e′ = p′′ (7)
WLOG E[•] = •.f (8)

σ ` p′′, h e′′, h′ (9)
(8)+(7)+(4)+(1) ⇒ h(σ, p′′.f) = v (10)
(10) ⇒ h(σ, p′′) = v′ (11)

h(v′.f) = v (12)
(11)+(9)+IH ⇒ e′′ = p′′′ (13)

h = h′

h′(σ, p′′′) = v′ (14)
∀f /∈ p′′ : f /∈ p′′′ (15)

(5)+(13)+(8) ⇒ e = p′′′.f = p′ (16)
(14)+(16) ⇒ h′(σ, p′) = h(v′.f) (17)
(17)+(12) ⇒ h′(σ, p′) = v
(4)+(5)+(8) ⇒ p = p′′.f (18)
Let f ′ such that f ′ /∈ p (19)

(19)+(18) ⇒ f ′ 6= f (20)
f ′ /∈ p′′ (21)

(21)+(15) ⇒ f ′ /∈ p′′′ (22)
(22)+(20)+(16) ⇒ f ′ /∈ p′ (23)

(19)→(23) ⇒ ∀f /∈ p : f /∈ p′

case (2) last was (Field) (3)
(3) ⇒ p = a.f (4)

e = h(a)↓3(f) = v′ (5)
h = h′ (6)

Let p′ = v′ (7)
(7)+(5) ⇒ e = p′

(7) ⇒ h(σ, p′) = v′ (8)
(5)+(4) ⇒ h(σ, p) = v′ (9)
(8)+(9)+(1) ⇒ h(σ, p′) = v (10)
(10)+(6) ⇒ h′(σ, p′) = v
(7) ⇒ ∀f /∈ p : f /∈ p′
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�

Lemma 3.6.4 Guards are preserved over execution.

h, σ `gb e : l
σ ` e, h e′, h′

` h

 =⇒ h′, σ `gb e
′ : l

Let h, σ `gb e : l (1)
σ ` e, h e′, h′ (2)
` h (3)

case (1) last was (Univ) (4)
(4) ⇒ l = u (5)

h, σ ` e : u _ (6)
u 6= any (7)

(6)+(3)+(2)+Lemma 3.5.6 ⇒ h′, σ ` e′ : u _ (8)
(5)+(8)+(7)+(Univ) ⇒ h′, σ `gb e

′ : l

case (1) last was (Var) (4)
(4) ⇒ e = l = p (5)

p ∈ {x, this} (6)
(5)+(6)+(2) ⇒ e′ = σ(p) (7)
(7) ⇒ e′ = h′(σ, p) (8)
(8) + (Val) ⇒ h′, σ `gb e

′ : p (9)
(9)+(5) ⇒ h′, σ `gb e

′ : l

case (1) last was (Field) (4)
(4) ⇒ e = p.f (5)

l = p′.f (6)
h, σ `gb p : p′ (7)

case (2) last was (Ctx) (8)
(8)+(5) ⇒ σ ` p, h p′′, h′ (9)
(4)+(7) ⇒ {p′}#F (10)
(7)+(9)+(3)+IH ⇒ h′, σ `gb p

′′ : p′ (11)
(11)+(Field) ⇒ h′, σ `gb p

′′.f : p′.f (12)
(12)+(10+(6) ⇒ h′, σ `gb e

′ : l

case (2) last was (Field) (8)
(8)+(5) ⇒ p = a (9)

e′ = h(a)↓3(f) (10)
h′ = h (11)

(7)+(9)+(Val) ⇒ h(σ, p′) = a (12)
(12)+(10) ⇒ h(σ, p′.f) = e′ (13)
(13)+(6) ⇒ h(σ, l) = e′ (14)
(14)+(Val) ⇒ h, σ `gb e

′ : l (15)
(15)+(11) ⇒ h′, σ `gb e

′ : l

�

case (1) last was (Val) (4)
(4) ⇒ e = v (5)
(5)+(2) ⇒ contradiction (values cannot reduce)

�
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Lemma 3.6.5 Path resolution is preserved over execution of other expressions.

h(σ, p) = v
σ′ ` e, h e′, h′

_, h, σ′ ` e : F
{p}#F

 =⇒ h′(σ, p) = v

Let h(σ, p) = v (1)
σ′ ` e, h e′, h′ (2)
_, h, σ′ ` e : F (3)
{p}#F (4)

(2)+(3)+Lemma A32 ⇒ ∀a, f /∈ F : h(a)↓3(f) = h′(a)↓3(f) (5)
(5)+(4)+(1) ⇒ h′(σ, p) = v

�

Lemma 3.6.6 Guards are preserved over the execution of other expressions.

h, σ `gb e : l
σ′ ` e′, h _, h′

_, h, σ ` e′ : F ′

{l}#F ′

 =⇒ h′, σ `gb e : l

Let h, σ `gb e : l (1)
σ′ ` e′, h _, h′ (2)
_, h, σ ` e′ : F ′ (3)
{l}#F ′ (4)

case (1) last was (Univ) (5)
(5) ⇒ l = u (6)

u 6= any (7)
h, σ ` e : u _ (8)

(8)+(2)+Lemma 3.5.4 ⇒ h′, σ ` e : u _ (9)
(6)+(7)+(9)+(Univ) ⇒ h′, σ `gb e : l

case (1) last was (Val) (5)
(5) ⇒ e = v (6)

h(σ, p) = v (7)
l = p (8)

(7)+(2)+(3)+(8)+(4)+Lemma 3.6.3 ⇒ h′(σ, p) = v (9)
(6)+(9)+(8)+(Val) ⇒ h′, σ `gb e : l

case (1) last was (Var) (5)
(5) ⇒ e = l = p (6)

p ∈ {x, this} (7)
(6)+(7)+(Var) ⇒ h′, σ `gb e : l

case (1) last was (Field) (5)
(5) ⇒ e = p.f (6)

l = p′.f (7)
h, σ `gb p : p′ (8)

(4)+(7) ⇒ {p′}#F (9)
(8)+(2)+(3)+(9)+IH ⇒ h′, σ `gb p : p′ (10)
(6)+(9)+(8)+(Val) ⇒ h′, σ `gb e : l

�
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Lemma 3.6.7 Virgin guards are preserved over the execution of other expressions.

h, σ `gb e : l
V irgin(e)
_ ` _, h _, h′

 =⇒ h′, σ `gb e : l

Let h, σ `gb e : l (1)
V irgin(e) (2)
_ ` _, h _, h′ (3)

case (1) last was (Univ) (4)
(4) ⇒ h, σ ` e : u _ (5)

u 6= any (6)
l = u (7)

(5)+(3)+Lemma 3.5.4 ⇒ h′, σ ` e : u _ (8)
(8)+(6)+(7)+(Univ) ⇒ h′, σ `gb e : l

case (1) last was (Var) (4)
(4) ⇒ e = p (5)

l = p (6)
p ∈ {x, this} (7)

(5)+(6)+(7)+(Var) ⇒ h′, σ `gb e : l

case (1) last was (Field) (4)
(4) ⇒ e = p.f (5)

l = p′.f (6)
h, σ `gb p : p′ (7)

(2)+(5) ⇒ V irgin(p) (8)
(7)+(8)+(3)+IH ⇒ h′, σ `gb p : p′ (9)
(5)+(6)+(9)+(Field) ⇒ h′, σ `gb e : l

case (1) last was (Val) (4)
(4) ⇒ e = v (5)
(5) ⇒ ¬V irgin(e) which contradicts (2)

�

Lemma 3.6.8 Types of virgin expressions are preserved over the execution of other expres-
sions.

L, h, σ ` e : F
_ ` _, h _, h′

V irgin(e)

 =⇒ L, h′, σ ` e : F

Let L, h, σ ` e : F (1)
_ ` _, h _, h′ (2)
V irgin(e) (3)

case (1) last was (Var) (Addr) (This) (Null) (New) (4)
(4) ⇒ e ∈ {x, a, this, null, new t} (5)

L = ∅ (6)
F = ∅ (7)

(5)+(6)+(7)+(Var)(Addr)
(This)(Null)(New) ⇒ L, h′, σ ` e : F

case (1) last was (Cast) (4)
(4) ⇒ e = (t)e′ (5)

L, h, σ ` e′ : F (6)
(3)+(5) ⇒ V irgin(e′) (7)
(6)+(2)+(7)+IH ⇒ L, h′, σ ` e′ : F (8)
(8)+(4)+(Cast) ⇒ L, h′, σ ` e : F
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case (1) last was (Field) (4)
(4) ⇒ e = e′.f (5)

L, h, σ ` e′ : F (6)
h, σ `gb e

′ : l (7)
l ∈ L (8)

(5)+(3) ⇒ V irgin(e′) (9)
(6)+(2)+(9)+IH ⇒ L, h′, σ ` e′ : F (10)
(7)+(2)+(3)+Lemma 3.6.7 ⇒ h′, σ `gb e

′ : l (11)
(5)+(10+(11)+(8)+(Field) ⇒ L, h′, σ ` e : F

case (1) last was (Assign) (4)
Similar to (Field)

case (1) last was (Sub) (4)
(4) ⇒ L′, h, σ ` e : F (5)

L′ ⊆ L (6)
F ′ ⊆ F (7)
L#F (8)
∀p ∈ L : L, h, σ ` p : _ (9)

(5)+(2)+(3)+IH ⇒ L′, h′, σ ` e : F ′ (10)
(9)+(2)+Lemma A25 ⇒ ∀ ∈ L : L, h′.σ ` p : _ (11)
(10)+(6)+(7)+(8)+(11)+(Sub) ⇒ L, h′, σ ` e : F

case (1) last was (Sync) (4)
(4) ⇒ e = synce′ e′′ e′′′ (5)

h, σ `gb e
′ : l (6)

h, σ `gb e
′′ : l (7)

L, h, σ ` e′ : F (8)
L, h, σ ` e′′ : F (9)
L ∪ {l}, h, σ ` e′′′ : F (10)

(5)+(3) ⇒ V irgin(e′) (11)
⇒ V irgin(e′′) (12)
⇒ V irgin(e′′′) (13)

(6)+(2)+(11)+Lemma 3.6.7 ⇒ h′, σ `gb e
′ : l (14)

(7)+(2)+(12)+Lemma 3.6.7 ⇒ h′, σ `gb e
′′ : l (15)

(8)+(2)+(11)+IH ⇒ L, h′, σ ` e′ : F (16)
(9)+(2)+(12)+IH ⇒ L, h′, σ ` e′′ : F (17)
(10)+(2)+(13)+IH ⇒ L ∪ {l}, h′, σ ` e′′′ : F (18)
(5)+(14)+(15)+(16)+(17)+(18)+(Sync) ⇒ L, h′, σ ` e : F

case (1) last was (Spawn) (4)
(4) ⇒ e = spawn e′ (5)

L = ∅ (6)
F = ∅ (7)
∅, h, σ ` e′ : _ (8)

(3)+(5) ⇒ V irgin(e′) (9)
(8)+(2)+(9)+IH ⇒ ∅, h′, σ ` e′ : _ (10)
(5)+(6)+(7)+(10)+(Spawn) ⇒ L, h′, σ ` e : F

case (1) last was (Call) (4)
(4) ⇒ e = e′.m(e′′) (5)

L, h, σ ` e′ : F (6)
L, h, σ ` e′′ : F (7)
h, σ ` e′ : u c (8)
Eff (c,m)↓2 ⊆ F (9)
L′ ∈ Eff (c,m)↓1 (10)
(h, σ, u, e, e′) L′ ⊆ L (11)
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(4)+(3) ⇒ V irgin(e′) (12)
V irgin(e′′) (13)

(12)+(6)+(2)+IH ⇒ L, h′, σ ` e′ : F (14)
(13)+(7)+(2)+IH ⇒ L, h′, σ ` e′′ : F (15)
(8)+(2)+Lemma 3.5.4 ⇒ h′, σ ` e′ : u c (16)
(11)+(12)+(13)+(2)+Lemma A18 ⇒ (h′, σ, u, e, e′) L′ ⊆ L (17)
(5)+(14)+(15)+(16)+(9)+(10)+(17)+(Call) ⇒ L, h′, σ ` e : F

�

Lemma 3.6.9 Path resolution is preserved over the execution of other expressions when locks
do not collide.

h(σ, p) = v
σ′ ` e, h _, h′

∅, h, σ′ ` e : _
L, h, σ ` p : _
{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e, w)} = ∅

 =⇒ h′(σ, p) = v

Let h(σ, p) = v (1)
σ′ ` e, h _, h′ (2)
∅, h, σ′ ` e : _ (3)
L, h, σ ` p : _ (4)
{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e, w)} = ∅ (5)

case (4) last was (Field) (6)
(6) ⇒ p = p′.f (7)

h, σ `gb p
′ : l (8)

l ∈ L (9)
L, h, σ ` p′ : _ (10)

(7)+(1) ⇒ h(σ, p′) = v′ (11)

v =
{

null if v′ = null

(h(v′)↓3(f) otherwise
(12)

(11)+(2)+(3)+
(10)+(5)+IH ⇒ h′(σ, p′) = v′ (13)
(11)+(8)+Lemma 3.6.4 ⇒ h, σ `gb v

′ : l (14)

case v'=null (15)
(15)+(12) ⇒ v = null (16)
(15)+(13) ⇒ h′(σ, p′) = null (17)
(17)+(7) ⇒ h′(σ, p) = null (18)
(18)+(16) ⇒ h′(σ, p) = v
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case v'=a (14)
(15)+(14) ⇒ h, σ `gb a : l (16)
(16)+(9)+(5) ⇒ ¬Locked(e, h(a)↓1) (17)
Let σ′ ` e, h β, (18)

case β = τ (19)
(18)+(19) ⇒ ∀a, f : a ∈ dom(h)⇒ h′(a)↓3(f) = h(a)↓3(f) (20)
(15)+(12)+(20) ⇒ h′(v′)↓3(f) = v (21)
(7)+(21)+(13)+(15) ⇒ h′(σ, p) = v

case β = a′ (19)
(18)+(19)+(3)+
Lemma 3.6.14 ⇒ Locked(e, h(a′)↓1) (20)
(20+(17) ⇒ a 6= a′ (21)
(21) ⇒ h′(a)↓3(f) = h(a)↓3(f) (22)
(22)+(15)+(12) ⇒ h′(a)↓3(f) = v (23)
(7)+(13)+(15)+(23) ⇒ h′(σ, p) = v

�

�

case (4) last was (Addr) (6)
(6) ⇒ p = a (7)
(7) ⇒ h′(σ, p) = a (8)
(7)+(1) ⇒ v = a (9)
(8)+(9) ⇒ h′(σ, p) = v

case (4) last was (This) (6)
(6) ⇒ p = this (7)
(7) ⇒ h′(σ, p) = σ(this) (8)
(7)+(1) ⇒ v = σ(this) (9)
(8)+(9) ⇒ h′(σ, p) = v

case (4) last was (Var) (6)
Similar to (This)

case (4) last was (Sub) (6)
(6) ⇒ L′, h, σ ` p : _ (7)

L′ ⊆ L (8)
(8)+(5) ⇒ {h(a)↓1|h, σ `gb a : l, l ∈ L′} # {w|Locked(e, w)} (9)
(1)+(2)+(3)+(7)+(9)+IH ⇒ h′(σ, p) = v

case (4) last was (Null) (6)
Similar to (Addr)

�

Lemma 3.6.10 Guards are preserved over the execution of other expressions when locks do
not collide.

h, σ `gb e : l
σ′ ` e′, h _, h′

∅, h, σ′ ` e′ : _
w = {h(a)↓1|h, σ `gb a : l, l ∈ L}
w ∩ {w|Locked(e′, w)} = ∅
l ∈∈ Path⇒ L, h, σ ` l : _


=⇒ h′, σ `gb e : l

Let h, σ `gb e : l (1)
σ′ ` e′, h _, h′ (2)
∅, h, σ′ ` e′ : _ (3)
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W = {h(a)↓1|h, σ `gb a : l, l ∈ L} (4)
W ∩ {w|Locked(e′, w)} = ∅ (5)
l ∈∈ Path⇒ L, h, σ ` l : _ (6)

case l = u (8)

case (1) last was (Univ) (9)
(8)+(9) ⇒ h, σ ` e : u (10)

u 6= any (11)
(10)+(2)+Lemma 3.5.4 ⇒ h′, σ ` e : u (12)
(12)+(11)+(Univ) ⇒ h′, σ `gb e : u (13)
(13)+(8) ⇒ h′, σ `gb e : l

�

case l = p (8)
(8)+(6) ⇒ L′, h, σ ` p : _ (9)

case (1) last was (Field) (10)

(10) ⇒ p = p′.f (11)
e = p′′.f (12)
h, σ `gb p

′′ : p′ (13)
(9)+(11)+Lemma A22 ⇒ L′, h, σ ` p′_ (14)
(13)+(2)+(3)+(4)
+(5)+(14)+IH ⇒ h′, σ `gb p

′′ : p′ (15)
(15)+(11)+(12)+(Field) ⇒ h′, σ `gb e : p (16)
(16)+(8) ⇒ h′, σ `gb e : l

case (1) last was (Val) (10)

(10) ⇒ e = v (11)
h(σ, p) = v (12)

(12)+(2)+(3)+(4)+(5)+(11)+Lemma 3.6.9 ⇒ h′(σ, p) = v (13)
(8)+(13)+(11)+(Val) ⇒ h′, σ `gb e : l

case (1) last was (Var) (10)

(10) ⇒ e = l ∈ {x, this} (11)
(11)+(Var) ⇒ h′, σ `gb e : l

�

�

Lemma 3.6.11 Types are preserved over the execution of other expressions when locks do
not collide.

L, h, σ ` e : F
σ′ ` e′, h _, h′

∅, h, σ′ ` e′ : _
Reachable(e)
∀w : ¬(Locked(e, w) ∧ Locked(e′, w))
{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e′, w)} = ∅


=⇒ L, h′, σ ` e : F

Let ∀w : ¬(Locked(e, w) ∧ Locked(e′, w)) (0)
L, h, σ ` e : F (1)
σ′ ` e′, h _, h′ (2)
∅, h, σ′ ` e′ : _ (3)
{h(a)↓1|h, σ `gb a : l, l ∈ L} ∩ {w|Locked(e′, w)} = ∅ (4)
Reachable(e) (5)
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(1)+Lemma A2 ⇒ ∀p ∈ L : L, h, σ ` p : _ (6)

case (1) last was (Frame) (7)
(7) ⇒ e = frame σ′′ e′′ (8)

∀w.¬(Locked(e′′, w) ∧ locked(e′, w)) (8b)
σ′′ = (a, v) (9)
L = (h, σ, u, a, v) L′ (10)
L′, h, σ′′ ` e′′ : F (11)
h, σ ` a : u _ (12)

Let l′ ∈ L′, a′ such that h, σ′′ `gb a
′ : l′ (13)

(13)+(10)+(12)+(9)+Lemma A24 ⇒ h, σ `gb a
′ : l (14)

l ∈ L (15)
(14)+(15)+(4) ⇒ ¬Locked(e′, h(a′)↓1) (16)

(13)→(16) {h(a′)↓1|h, σ′′ `gb a
′′ : l′, l′ ∈ L′} ∩ {w|Locked(e′, w} = ∅(17)

(8)+(5) ⇒ Reachable(e′′) (18)
(8b)+(11)+(2)+(3)
+(17)+(17)+IH ⇒ L′, h′, σ′′ ` e′′ : F (19)
(10+(2)+(3)+(4)
+(6)+Lemma A23 ⇒ (h′, σ, u, a, v) L′ = L (20)
(8)+(5) ⇒ h′, σ ` a : u _ (21)
(8)+(9)+(20)+(19)
+(21)+(Frame) ⇒ L, h′, σ ` e : F

case (1) last was (Sub) (7)
(7) ⇒ L′, h, σ ` e : F ′ (8)

L′ ⊆ L (9)
F ′ ⊆ F (10)
L′#F ′ (11)
∀p ∈ L′ : L′h, σ ` p : _ (12)

(9)+(14) ⇒ {h(a)↓1|h, σ `gb a : l, l ∈ L′} ∩ {w|Locked(e′, w)} = ∅ (13)
(0)+(8)+(2)+(3)
+(13)+(5)+IH ⇒ L′, h′, σ ` e : F ′ (14)
de�nition of L′ ⇒ ∀p ∈ L′ : V irgin(p) (15)
(15)+(12)+(2)
+Lemma 3.6.8 ⇒ ∀p ∈ L′ : L, h′, σ ` p : _ (16)
(14)+(9)+(10)+(11)
+(16)+(Sub) ⇒ L, h′, σ ` e : F

case (1) last was (Call) (7)
(7) ⇒ e = e′′.m(e′′′) (8)

L, h, σ ` e′′ : F (9)
L, h, σ ` e′′′ : F (10)
h, σ ` e′′ : u c (11)
Eff (c,m)↓2 ⊆ F (12)
L′ ∈ Eff ((, c),m)↓1 (13)
(h, σ, u, e′′, e′′′) L′ ⊆ L (14)

(8) ⇒ ∀w.Locked(e′′, w)⇔ Locked(e, w) (15)
(15)+(0) ⇒ ∀w.¬Locked(e′′, w) ∧ Locked(e′, w) (16)
(8) ⇒ ∀w.Locked(e′′′, w)⇔ Locked(e, w) (17)
(17)+(0) ⇒ ∀w.¬Locked(e′′′, w) ∧ Locked(e′, w) (18)
(5) ⇒ Reachable(e′′) (19)

Reachable(e′′′) (20)
(16)+(9)+(2)+(3)
+(4)+(19)+IH ⇒ L, h′, σ ` e′′ : F (21)
(18)+(10)+(2)+(3)
+(4)+(20)+IH ⇒ L, h′, σ ` e′′′ : F (22)
(11)+(2)+Lemma 3.5.4 ⇒ h′, σ ` e′′ : u c (23)
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(14)+(2)+(3)+(4)
+(6)+Lemma A23 ⇒ (h′, σ, u, e′′, e′′′) L′ ⊆ L (24)
(8)+(21)+(22)
+(23)+(12)+(13)
+(24)+(Call) ⇒ L, h′, σ ` e : F

case (1) last was (Synced) (7)
(7) ⇒ e = syncede0

w e′′ (8)
L, h, σ ` e0 : F (9)
h(a)↓1 = w (10)
h, σ `gb a : l (11)
h, σ `gb e0 : l (12)
L ∪ {l}, h, σ ` e′′ : F (13)

(8) ⇒ Locked(e, w) (14)
(14)+(0) ⇒ ¬Locked(e′, w) (15)
(5) ⇒ V irgin(e0) (16)

Reachable(e′′) (17)
(8)+(0)+(15) ⇒ ∀w : ¬(Locked(e′′h) ∧ Locked(e′, w)) (18)
(10)+(11)+Lemma A15 ⇒ ∀a′ : h, σ `gb a

′ : l (19)
(19)+(4)+(15) ⇒ {h(a′)↓1|h, σ `gb a

′ : l′, l′ ∈ L ∪ {l}}
∩{w|Locked(e′, w)} = ∅ (20)

(18)+(13)+(2)+(3)
+(20)+(17)+IH ⇒ L ∪ {l}, h′, σ ` e′′ : F (21)
(13)+Lemma A2 ⇒ ∀p ∈ L ∪ {l} : L ∪ {l}, h, σ ` p : _ (22)
(22) ⇒ l ∈ Path⇒ L ∪ {l}, h, σ ` l : _ (23)
(11)+(23)+(2)+(3)
+(20)+Lemma 3.6.10 ⇒ h′, σ `gb a : l (24)
(12)+(16)
+(2)+Lemma 3.6.7 ⇒ h′, σ `gb e0 : l (25)
(9)+(16)
+(2)+Lemma 3.6.8 ⇒ L, h′, σ ` e0 : F (26)
(10)+(2)+Lemma 3.5.3 ⇒ h′(a)↓1 = w (27)
(8)+(26)+(27)+(24)
+(25)+(21)+(Synced) ⇒ L, h′, σ ` e : F

case (1) last was (Sync) (7)
(7) ⇒ e = synce0

e′′ e1 (8)
L, h, σ ` e0 : F (9)
L, h, σ ` e′′ : F (10)
h, σ `gb e0 : l (11)
h, σ `gb e

′′ : l (12)
L ∪ {l}, h, σ ` e1 : F (13)

(5)+(8) ⇒ Reachable(e′′) (14)
V irgin(e0) (15)
V irgin(e1) (16)

(9)+(2)+(15)
+Lemma 3.6.8 ⇒ L, h′, σ ` e0 : F (17)
(13)+(2)+(16)
+Lemma 3.6.8 ⇒ L ∪ {l}, h′, σ ` e1 : F (18)
(11)+(2)+(15)
+Lemma 3.6.7 ⇒ h, σ `gb e0 : l (19)
Let l = p for some p ∈ Path (20)

(20)+(11)+(15)+Lemma A26 ⇒ e0 = p (21)
(21)+(9) ⇒ L, h, σ ` p : _ (22)

(20)→(22) ⇒ l ∈ Path⇒ L, h, σ ` l : _ (23)
(12)+(23)+(2)+(3)
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+(4)+Lemma 3.6.10 ⇒ h′, σ `gb e
′′ : l (24)

(8) ⇒ ∀w : Locked(e′′, w)⇔ Locked(e, w) (25)
(25)+(0) ⇒ ∀w : ¬(Locked(e′′, w) ∧ Locked(e′, w)) (26)
(26)+(10)+(2)+(3)
+(4)+(14)+IH ⇒ L, h′, σ ` e′′ : F (27)
(8)+(17)+(27)+(19)
+(24)+(27)+(Sync) ⇒ L, h′, σ ` e : F

case (1) last was (Assign) (7)
(7) ⇒ e = e′′.f := e′′′ (8)

L, h, σ ` e′′ : F (9)
L, h, σ ` e′′′ : F (10)
f ∈ F (11)
h, σ ` e′′ : L (12)
l ∈ L (13)

(8) ⇒ ∀w : Locked(e′′, w)⇔ Locked(e′, w) (14)
∀w : Locked(e′′′, w)⇔ Locked(e′, w) (15)

(14)+(15) ⇒ ∀w : ¬(Locked(e′′′, w) ∧ Locked(e′, w)) (16)
∀w : ¬(Locked(e′′, w) ∧ Locked(e′, w)) (17)

(5)+(8) ⇒ Reachable(e′′) (18)
Reachable(e′′′) (19)

(17)+(9)+(2)+(3)
+(4)+(18)+IH ⇒ L, h′, σ ` e′′ : F (20)
(16)+(10)+(2)+(3)
+(4)+(19)+IH ⇒ L, h′, σ ` e′′′ : F (21)
(12)+(13)+(6)+(2)
+(3)+(4)+Lemma 3.6.10 ⇒ h′, σ `gb e

′′ : l (22)
(8)+(20)+(21)+(11)
+(22)+(13)+(Assign) ⇒ L, h′, σ ` e : F

case (1) last was (Field) (7)
Similar to (Assign)

case (1) last was (Spawn) (7)
(7) ⇒ e = spawn e′′ (8)

∅, h, σ ` e′′ : _ (9)
L = ∅ ∧ F = ∅ (9b)

(8)+(5) ⇒ V irgin(e′′) (10)
(9)+(10)+(2) ⇒ ∅, h′, σ ` e′′ : _ (11)
(9b)+(11)+(8)+(Spawn) ⇒ L, h′, σ ` e : F

case (1) last was (Cast) (7)
(7) ⇒ e = (t)e′′ (8)

L, h, σ ` e′′ : F (9)
(5)+(8) ⇒ Reachable(e′′) (10)
(8)+(0) ⇒ ¬(Locked(e′′, w) ∧ Locked(e′, w)) (11)
(11)+(9)+(2)+(3)
+(4)+(10)+IH ⇒ L, h′, σ ` e′′ : F (12)
(12)+(8)+(Cast) ⇒ L, h′, σ ` e : F

case (1) last was (Addr) (This) (Var) (Null) (New) (7)
Trivial.

�
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Theorem 3.6.12 The type of a thread is preserved over the execution of that thread.

L, h, σ ` e : F
σ ` e, h e′, h′

h, σ ` e : t
` h
Reachable(e)

 =⇒ L, h′, σ ` e′ : F
Reachable(e′)

Let L, h, σ ` e : F (1)
σ ` e, h e′, h′ (2)
h, σ ` e : t (3)
` h (4)
Reachable(e) (5)

case (1) last was (Var) (Null) (This) (New) (6)
(6)+(2) ⇒ e′ = v (7)
(7)+(Null) +(Addr) ⇒ ∅, h′, σ ` e′ : ∅ (8)
(1)+Lemma A2 ⇒ L#F (9)

∀p ∈ L : L, h, σ ` p : _ (10)
(10)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (11)
(8)+(9)+(11)+(Sub) ⇒ L, h′, σ ` e′ : F
(7) ⇒ Reachable(e′)

case (1) last was (Addr) (6)
(6) ⇒ e = a (7)

contradicts (2), addresses cannot reduce

case (1) last was (Cast) (6)

case (2) last was (Ctx) (7)
(6)+(7) ⇒ e = (t′)e′′ (8)

σ ` e′′, h e′′′, h′ (9)
e′ = (t′)e′′′ (10)

(1)+(6)+(8) ⇒ L, h, σ ` e′′ : F (11)
(3)+(8)+Lemma A1 ⇒ h, σ ` e′′ : t′′ (12)
(8)+(5) ⇒ Reachable(e′′) (13)
(11)+(9)+(12)+(4)+(13)+IH ⇒ L, h′, σ ` e′′′ : F (14)

⇒ Reachable(e′′′) (15)
(14)+(10)+(Cast) ⇒ L, h′, σ ` e′ : F
(15)+(10) ⇒ Reachable(e′)

case (2) last was (Cast) (7)
(6)+(7) ⇒ e′ = a (8)
(8) ⇒ ∅, h′, σ ` e′ : ∅ (9)
(1)+Lemma A2 ⇒ L#F,∀p ∈ L : L, h, σ ` p : _ (10)
(10)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (11)
(9)+(10)+(11)+(Sub) ⇒ L, h′, σ ` e′ : F
(8) ⇒ Reachable(e′)

�

case (1) last was (Field) (6)
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case (2) last was (Ctx) (7)
(6)+(7) ⇒ e = e′′.f (8)

σ ` e′′, h e′′′, h′ (9)
e′ = e′′′.f (10)

(3)+(8)+Lemma A1 ⇒ h, σ ` e′′ : t′ (11)
(6)+(8)+(Field) ⇒ L, h, σ ` e′′ : F (12)

h, σ `gb e
′′ : l (13)

l ∈ L (14)
(8)+(15) ⇒ Reachable(e′′) (15)
(12)+(9)+(11)+(4)+(15)+IH ⇒ L, h′, σ ` e′′′ : F (16)

Reachable(e′′′) (17)
(13)+(9)+(4)+Lemma 3.6.4 h′, σ `gb e

′′ : l (18)
(16)+(18)+(14)+(10)+(Field) ⇒ L, h′, σ ` e′ : F
(17)+(10) ⇒ Reachable(e′)

case (2) last was (Field) (7)
(6)+(7) ⇒ e = a.f (8)

e′ = h(a)↓3(f) = v (9)
(9)+(Addr) +(Null) ⇒ ∅, h′, σ ` e′ : ∅ (10)
(1)+Lemma A2 ⇒ ∅, h′, σ ` e′ : ∅ (11)

⇒ ∀p ∈ L : L, h, σ ` p : _ (12)
(12)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (13)
(10)+(11)+(13)+(Sub) ⇒ L, h′, σ ` e′ : F
(9) ⇒ Reachable(e′)

�

case (1) last was (Sub) (6)
(6) ⇒ L′ ⊆ L (7)

F ′ ⊆ F (8)
L#F (9)
L′, h, σ ` e : F ′ (10)
∀p ∈ L : L, h, σ ` p : _ (11)

(10)+(2)+(3)+(4)+(5)+IH ⇒ L′, h′, σ ` e′ : F ′ (12)
Reachable(e′)

(11)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (13)
(12)+(7)+(8)+(9)+(13)+(Sub) ⇒ L, h′, σ ` e′ : F

case (1) last was (Call) (6)
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case (2) last was (Ctx) with E[•] = •.m(_) (7)
(6)+(7) ⇒ e = e1.m(e0) (8)

L, h, σ : e1 : F (9)
L, h, σ : e0 : F (10)
h, σ ` e1 : u c′ (11)
e′ = e2.m(e0) (12)
σ ` e1, h e2, h

′ (13)
Eff (c′,m)↓2 ⊆ F (14)
L′ ∈ Eff (c′,m)↓1 (15)
(h, σ, u, e1, e0) L′ ⊆ L (16)

(5)+(8) ⇒ Reachable(e1) (17)
V irgin(e0) (18)

(8)+(3)+Lemma A1 ⇒ h, σ ` e1 : _ (19)
(9)+(13)+(19)+(4)+(17)+IH ⇒ L, h′, σ ` e2 : F (20)

Reachable(e2) (21)
(10)+(13)+(18)+Lemma 3.6.8 ⇒ L, h′, σ ` e0 : F (22)
(11)+(13)+(4)+Lemma 3.5.6 ⇒ h′, σ ` e2 : u c′ (23)
(4)+(16)+(13)+(18)+Lemma A3 ⇒ (h′, σ, u, e2, e0) L′ ⊆ L (24)
(20)+(22)+(23)+(14)+(15)
+(24)+(12)+(Call) ⇒ L, h′, σ ` e′ : F
(21)+(18)+(12) ⇒ Reachable(e′)

case (2) last was (Ctx) with E[•] = a.m(•) (7)
(6)+(7) ⇒ e = a.m(e1) (8)

L, h, σ ` a : F (9)
L, h, σ ` e1 : F (10)
h, σ ` a : u c′ (11)
e′ = a.m(e2) (12)
σ ` e1, h e2, h

′ (13)
Eff (c′,m)↓2 ⊆ F (14)
L′ ∈ Eff (c′,m)↓1 (15)
(h, σ, u, a, e1) L′ ⊆ L (16)

(8)+(3)+Lemma A1 ⇒ h, σ ` e1 : _ (17)
(5)+(8) ⇒ V irgin(e1) ∨ Reachable(e1) (18)
(17)+Lemma A7 ⇒ Reachable(e1) (19)
(10)+(13)+(17)+(4)+(19)+IH ⇒ L, h′, σ ` e2 : F (20)

⇒ Reachable(e2) (21)
(1)+Lemma A2 ⇒ L#F (22)

⇒ ∀p ∈ L : L, h, σ ` p : _ (23)
(23)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (24)
(Addr) ⇒ ∅, h′, σ ` a : ∅ (25)
(25)+(Sub) +(22)+(24) ⇒ L, h′, σ ` a : F (26)
(11)+(13)+Lemma 3.5.4 ⇒ h′,` a : u c′ (27)
(4)+(16)+(13)+(10)+(22)+Lemma A4 ⇒ (h′, σ, u, a, e2) L′ ⊆ L (28)
(20)+(26)+(27)+(14)
+(15)+(28)+(12)+(Call) ⇒ L, h′, σ ` e′ : F
(21)+(12) ⇒ Reachable(e′)
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case (2) last was (Call) (7)
(6)+(7) ⇒ e = a.m(v) (8)

e′ = frame σ′ S(eb) (9)
σ′ = (a, v) (10)
eb = MBody(c,m) (11)
c = h(a)↓2 (12)
h = h′ (13)
L, h, σ ` a : F (14)
L, h, σ ` v : F (15)
h, σ ` a : u c′ (16)
F ′ = Eff (c′,m)↓2 (17)
F ′ ⊆ F (18)
L′ ∈ Eff (c′,m)↓1 (19)
(h, σ, u, a, v) L′ ⊆ L (20)

case (3) last was (Sub) (2)
1 (21) ⇒ h, σ ` e : t′ (22)

t′ ≤ t (23)
(1)+(2)+(22)+(4)+(5)+IH ⇒ L, h′, σ ` e′ : F

Reachable(e′)

case (3) last was (Call) (2)
1 (8)+(21) ⇒ h, σ ` a : u′′ c′′ (22)

M ((, c)′′,m) = _ m(u′′ t′′x) (23)
h, σ ` v : t′′ (24)

(16)+(12)+Lemma A5 ⇒ c′ ≥ c (25)
(22)+(12)+Lemma A5 ⇒ c′′ ≥ c (26)
(` c)+(17)+(19)+(25) ⇒ L′′ ∈ Eff (c,m)↓1 (27)

L′′ ⊆ L′ (28)
Eff (c,m)↓2 ⊆ F ′ (29)
M (c,m) = _ m(tx) (30)
Γ = (self c, tx) (31)
L′′,Γ ` eb : Eff (c,m)↓2 (32)

(1)+Lemma A2 ⇒ L#F (33)
∀p ∈ L : L, h, σ ` p : _ (34)

(34)+(2)+Lemma A25 ⇒ ∀p ∈ L′ : L′, h′, σ ` p : _ (35)
(` c′)+(19)+(17) ⇒ MBody(c′,m) (36)
(36)+Lemma 3.6.1 ⇒ L′#F ′ (37)
(Sub) +(37)+(32) ⇒ L′,Γ ` eb : F ′ (38)
(12)+(10)+(Addr) ⇒ h, σ′Γa : self c (39)
(22)+(24)+Lemma A6 ⇒ h, σ′ ` v : u′′ t′′x (40)
(30)+(` c)+(26)+(23) ⇒ u′′ t′′x ≤ tx (41)
(40)+(41)+(Sub) ⇒ h, σ′ ` v : tx (42)
(42)+(31)+(39)+(38)
+(10)+Lemma 3.6.2 ⇒ L′, h, σ′ ` S(eb) : F ′ (43)
(16)+(10)+(43)+(Frame) ⇒ L′′′, h′, σ ` frame σ′ S(eb) : F ′ (44)

L′′′ = (h, σ, u, a, v) L′ (45)
(9)+(44)+(45)+(18)
+(20)+(33)+(35)+(Sub) ⇒ L, h′, σ ` e′ : F
(11) ⇒ V irgin(S(eb)) (46)
(46)+Lemma A7 ⇒ Reachable(S(eb)) (47)
(47)+(9) ⇒ Reachable(e′)

�

�
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case (1) last was (Assign) (6)

case (2) last was (Ctx) with E[•] = •.f := . . . (7)
(6)+(7) ⇒ e = e1.f := e0 (8)

σ ` e1, h e2, h
′ (9)

e′ = e2.f := e0 (10)
L, h, σ ` e1 : F (11)
L, h, σ ` e0 : F (12)
h, σ `gb e1 : l (13)
l ∈ L (14)
f ∈ F (15)

(9) ⇒ e1 6= a (16)
(5)+(8)+(16) ⇒ V irgin(e0) (17)
(12)+(17)+(9)+Lemma 3.6.8 ⇒ L, h′, σ ` e0 : F (18)
(3)+(8)+Lemma A1 ⇒ h, σ ` e1 : t′ (19)
(5)+(8) ⇒ Reachable(e1) (20)
(11)+(9)+(19)+(4)+(20)+IH ⇒ L, h′, σ ` e2 : F (21)

Reachable(e2) (22)
(13)+(4)+(9)+Lemma 3.6.4 ⇒ h′, σ `gb e2 : l (23)
(21)+(18)+(23)+(14)+(15)+(Assign) ⇒ L, h′, σ ` e2.f := e0 : F (24)
(24)+(10) ⇒ L, h′, σ ` e′ : F
(22)+(17) ⇒ Reachable(e2.f := e0) (25)
(25)+(10) ⇒ Reachable(e′)

case (2) last was (Ctx) with E[•] = a.f := • (7)
(6)+(7) ⇒ e = a.f := e1 (8)

σ ` e1, h e2, h
′ (9)

e′ = a.f := e2 (10)
L, h, σ ` a : F (11)
L, h, σ ` e1 : F (12)
h, σ `gb a : l (13)
l ∈ L (14)
f ∈ F (15)

(5)+(8) ⇒ Reachable(e1) (16)
(3)+(8)+Lemma A1 ⇒ h, σ ` e1 : t′ (17)
(12)+(9)+(17)+(4)+(16)+IH ⇒ L, h′, σ ` e2 : F (18)

Reachable(e2) (19)
(1)+Lemma A2 ⇒ L#F (20)
(Addr) ⇒ ∅, h′σ ` a : ∅ (21)
(21)+(20)+(Sub) ⇒ L, h′, σ ` a : F (22)
(13)+(9)+(12)+(14)+(20)+Lemma 3.6.6 ⇒ h′, σ `gb a : l (23)
(18)+(22)+(23)+(14)+(15)+(10)+(Assign) ⇒ L, h′, σ ` e′ : F
(19)+(10) ⇒ Reachable(e′)

case (2) last was (Assign) (7)
(6)+(7) ⇒ e = a.f := v (8)

e′ = v (9)
(1)+Lemma A2 ⇒ L#F (10)

∀p ∈ L : L, h, σ ` p : _ (11)
(11)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (12)
(9)+(Addr) ⇒ ∅, h′, σ ` e′ : ∅ (13)
(11)+(10)+(12)+(Sub) ⇒ L, h′, σ ` e′ : F
(9) ⇒ Reachable(e′)

�

case (1) last was (Frame) (6)
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case (2) last was (Ctx) (()
6)+(7) ⇒ e = frame (a, v) e′′ (8)

L = (h, σ, u, a, v) L′ (9)
h, σ ` a : u _ (10)
L′, h, (a, v) ` e′′ : F (11)
(a, v) ` e′′, h e′′′, h′ (12)
frame (av) e′′′ (13)

(8) ⇒ Reachable(e′′) (14)
(3)+(8)+Lemma A11 ⇒ h, (a, v) ` e′′ : t′ (15)
(11)+(12)+(15)+(4)+(14)+IH ⇒ L, h′, (a, v) ` e′′′ : F (16)

Reachable(e′′′) (17)
(1)+Lemma A2 ⇒ L#F (18)
(9)+(12)+(11)+(18)+Lemma A10 ⇒ h′, σ, u, a, v) L′ = L (19)
(10)+(12)+Lemma 3.5.4 ⇒ h′, σ ` a : u _ (20)
(16)+(19)+(20)+(13)+(Frame) ⇒ L, h′, σ ` e′ : F
(17)+(13) ⇒ Reachable(e′)

case (2) last was (Frame2) (()
6)+(7) ⇒ e = v (8)
(1)+Lemma A2 ⇒ L#F (9)

∀p ∈ L : L, h, σ ` p : _ (10)
(10)+(2)+Lemma A25 ⇒ ∀p ∈ L : L, h′, σ ` p : _ (11)
(8)+(Addr) +(Null) ⇒ ∅, h′, σ ` e′ : ∅ (12)
(12)+(9)+(11)+(Sub) ⇒ L, h, σ ` e′ : F
(8) ⇒ Reachable(e′)

�

case (1) last was (Sync) (6)

case (2) last was (Ctx) (()
6)+(7) ⇒ e = synce0

e1 e
′′ (8)

h, σ `gb e0 : l (9)
h, σ `gb e1 : l (10)
L, h, σ ` e0 : F (11)
L, h, σ ` e1 : F (12)
L ∪ {l}, h, σ ` e′′ : F (13)
σ ` e1, h e2, h

′ (14)
e′ = synce0

e2 e
′′ (15)

(8)+(5) ⇒ V irgin(e0) ∧ V irgin(e′′) (16)
Reachable(e1) (17)

(9)+(16)+(14)+Lemma 3.6.7 ⇒ h′, σ `gb e0 : l (18)
(10)+(4)+(14)+Lemma 3.6.4 ⇒ h′, σ `gb e2 : l (19)
(11)+(16)+(14)+Lemma 3.6.8 ⇒ L, h′, σ ` e0 : F (20)
(3)+Lemma A1 ⇒ h, σ ` e : t′ (21)
(12)+(14)+(21)+(4)+(17)+IH ⇒ L, h, σ ` e2 : F (22)

Reachable(e2) (23)
(13)+(16)+(14)+Lemma3.6.8 ⇒ L ∪ {l}, h′, σ ` e′′ : F (24)
(18)+(19)+(20)+(22)+(24)+(15)+(Sync) ⇒ L, h′, σ ` e′ : F
(23)+(16)+(15) ⇒ Reachable(e′)

�

case (1) last was (Synced) (6)
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case (2) last was (Ctx) (()
6)+(7) ⇒ e = syncede0

w e1 (8)
σ ` e1, h e2, h

′ (9)
h, σ `gb e0 : l (10)
h, σ `gb a : l (11)
h(a)↓1 = w (12)
L, h, σ ` e0 : F (13)
L ∪ {l}, h, σ ` e1 : F (14)
e′ = syncede0

w e2 (15)
(3)+(8)+Lemma A1 ⇒ h, σ ` e1 : t′ (16)
(5)+(8) ⇒ V irgin(e0) (17)

Reachable(e1) (18)
(14)+(9)+(16)+(4)+(18)+IH ⇒ L ∪ {l′}, h, σ ` e2 : F (19)

Reachable(e2) (20)
(10)+(13)+(9)+Lemma 3.6.7 ⇒ h′, σ `gb e1 : l (21)
(14)+Lemma A2 ⇒ L ∪ {l}#F (22)
(22) ⇒ {l}#F (23)
(13)+(17)+(9)+(23)+Lemma 3.6.6 ⇒ h′, σ `gb a : l (24)
(13)+(17)+(9)+Lemma 3.6.8 ⇒ L, h′, σ ` e0 : F (25)
(21)+(24)+(25)+(12)+(19)+(15)+(Synced) ⇒ L, h′, σ ` e′ : F
(20)+(17)+(15) ⇒ Reachable(e′)

�

�

Theorem 3.6.13 Well-typedness of the system is preserved over execution.

` h
h, σ ` e1...n

σ ` e1...n, h e′1...n, h
′

h, σ ` e1...n : t1...n

∀i ∈ {1 . . . n} : Reachable(ei)

 =⇒ h′, σ ` e′1...m

∀i ∈ {1 . . .m} : Reachable(e′i)

Let ` h (1)
h, σ ` e1...n (2)
σ ` e1...n, h e′1...n, h

′ (3)
h, σ ` e1...n : t1...n (4)
∀i ∈ {1 . . . n} : Reachable(ei) (5)

(2)+(Threads) ⇒ ∀i ∈ {1 . . . n} : ∅, h, σ ` ei : _ (6)
∀i, j ∈ {1 . . . n}, w : Locked(ei, w) ∧ Locked(ej , w)⇒ i = j (7)

(4)+(Threads) ⇒ ∀i ∈ {1 . . . n} : h, σ ` ei : ti (8)

case (1) last was (Interleave) (9)
(9) ⇒ i ∈ {1 . . . n} (10)

ei ` h, e′i  h′, (11)
∀j 6= i : e′j = ej (12)

m = n (13)
(1)+(10)+(6)
+(8)+(5)+(11)
+Lemma 3.6.12 ⇒ ∅, h, σ ` e′i : _ (14)

Reachable(e′i) (14b)
Let j 6= i (15)

(15)+(6) ⇒ ∅, h, σ ` ej : _ (16)
(10)+(6) ⇒ ∅, h, σ ` ei : _ (17)
(16)+(17)+(11)+(5)+(7)+Lemma 3.6.11 ⇒ ∅, h′, σ ` ej : _ (18)

(15)→(18) ⇒ ∀j 6= i : ∅, h′, σ ` ej : _ (19)
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(12)+(19) ⇒ ∀j 6= i : ∅, h′, σ ` e′j : _ (20)

(13)+(14)+(20) ⇒ ∀i ∈ {1 . . .m} : ∅, h′, σ ` ei : _ (21)
(12)+(5) ⇒ ∀j 6= i : Reachable(e′j) (22)

(22)+(14b) ⇒ ∀i ∈ {1 . . . n} : Reachable(e′i) (23)
(12) ⇒ ∀j 6= i : ∀w : Locked(e′j , w)⇔ Locked(ej , w) (24)

(11)+Lemma A12 ⇒ ∀w : Locked(ei, w)⇔ Locked(e′i, w) (25)
(24)+(25)+(13) ⇒ ∀i ∈ {1 . . .m} : Locked(e′i, w)⇔ Locked(ei, w) (26)
Let i, j, w such that Locked(e′i, w) ∧ Locked(e′j , w) (27)

(27)+(26) ⇒ Locked(ei, w) ∧ Locked(ej , w) (28)
(28)+(7) ⇒ i = j (29)

(27)→(29) ⇒ ∀i ∈ {1 . . .m} : (Locked(e′i, w) ∧ Locked(e′j , w))⇒ i = j (30)

(30)+(21) ⇒ h′, σ ` e′{1 . . .m}
(23)+(13) ⇒ ∀i ∈ {1 . . .m} : Reachable(e′i)

case (1) last was (Spawn) (9)
(9) ⇒ ei = C[spawn e′ (10)

σ′ = Active(σ,C[•]) (11)
m = n+ 1 (12)
e′m = frame σ′ e′ (13)
e′i = C[null] (14)
∀j /∈ {i,m} : e′j = ej (15)

h′ = h (16)
(Null) ⇒ ∀σ′, t′ : h, σ′ ` null : t′ (17)
Lemma A20 ⇒ ∀L′, σ′, F ′ : L′, h, σ′ ` spawn e′ : F ′ ⇒ L′, h, σ′ ` v : F ′ (18)
clearly spawn e′ /∈ Path (19)
(5) ⇒ Reachable(ei) (20)
(20)+(10)
+Lemma A28 ⇒ spawn e′ ⇒ V irgin(e′) (21)
(21) ⇒ @frame _ _ ∈ e′ (22)
(22) ⇒ ∀σ′ : Active(σ′, e′) = σ′ (23)
(6)+(10) ⇒ ∅, h, σ ` C[spawn e′] : _ (24)
(24)+(17)+(18)
+(19)+(23)
+Lemma A13+(11) ⇒ L′′, h, σ′ ` spawn e′ : F ′′ (25)

L, h, σ ` C[null] : F (26)
(25)+Lemma A31 ⇒ ∅, h, σ′ ` e′ : _ (27)
WLOG let (a, v) = σ′ and h, σ ` a : u c (28)
clearly ∅ = (h, σ, u, a, v) ∅ (29)
(27)+(28)+(29) ⇒ ∅, h, σ ` frame σ′ e′ : _ (30)
(30)+(13) ⇒ ∅, h, σ ` e′m : _ (31)
(26)+(14)+(31)
+(12)+(15)+(6) ⇒ ∀i ∈ {1 . . .m} : ∅, h, σ ` e′i : _ (32)
(32)+(16) ⇒ ∀i ∈ {1 . . .m} : ∅, h′, σ ` e′i : _ (33)
(15) ⇒ ∀j /∈ {i,m}, w : Locked(e′j , w)⇔ Locked(ej , w) (34)

(13)+(21) ⇒ ∀w.¬Locked(e′m, w) (35)
(21)+(16)+(14) ⇒ ∀w.Locked(C[•], w)⇔ Locked(ei, w)⇔ Locked(e′i, w) (36)
(34)+(36) ⇒ ∀i ∈ {1 . . . n}, w : Locked(e′i, w)⇔ Locked(ei, w) (37)
(37) ⇒ ∀i, j ∈ {1 . . . n}, w :

(Locked(e′i, w) ∧ Locked(e′j , w))
⇒ (Locked(ei, w) ∧ Locked(ej , w)) (38)

(38)+(37) ⇒ ∀, j ∈ {1 . . . n}, w :
(Locked(e′i, w) ∧ Locked(e′j , w))⇒ i = j (39)

(12)+(39)+(35) ⇒ ∀, j ∈ {1 . . .m}, w :
(Locked(e′i, w) ∧ Locked(e′j , w))⇒ i = j (40)

(15)+(5) ⇒ ∀j /∈ {i,m} : Reachable(e′j) (41)
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(13)+(21)
+Lemma A7 ⇒ Reachable(e′m) (42)
clearly Reachable(v) (43)
(10)+(43)+(14)
+(20)+Lemma A28 ⇒ Reachable(e′i) (44)
(41)+(42)+(44) ⇒ ∀i ∈ {1 . . .m} : Reachable(e′i)
(40)+(33) ⇒ h′σ ` e1...m

case (1) last was (Lock) (9)
(9) ⇒ i ∈ {1 . . . n} (10)

m = n, h = h′ (11)
ei = C[synce′′ a e′′′] (12)
e′i = C[syncede′′ w e′′′] (13)
∀j 6= i : e′j = ej (14)

h(a)↓1 = w (15)
∀j ∈ {1 . . . n} : Locked(ej , w)⇒ i = j (16)

(10)+(12)+(6) ⇒ ∅, h, σ ` C[sync e′′ ae′′′] : _ (17)
(15)+Lemma A16 ⇒ ∀σ′, t′ : h, σ′ ` sync e′′ ae′′′ : t′ ⇒

h, σ′ ` syncede′′ w e′′′ : t′ (18)
(15)+Lemma A17 ⇒ ∀σ′,L′, F ′ : L′, h, σ′ ` sync e′′ ae′′′ : F ′ ⇒

L′, h, σ′ ` syncede′′ w e′′′ : F ′ (19)
clearly synce′′ a e′′′ /∈ Path (20)
(5)+(10) ⇒ Reachable(ei) (21)
(21)+(12)
+Lemma A28 ⇒ Reachable(synce′′ a e′′′) (22)
(22) ⇒ V irgin(e′′) ∧ V irgin(e′′′) (22b)
(22b) ⇒ ∀σ′ : Active(σ′, sync e′′ ae′′′) (23)
(17)+(18)+(19)+(20)
+(23)+Lemma A13 ⇒ ∅, h, σ ` C[syncede′′ w e′′′] : _ (24)
(24)+(13) ⇒ ∅, h, σ ` e′i : _ (25)
(11)+(25)+(14)+(6) ⇒ ∀i ∈ {1 . . .m} : ∅, h′, σ ` e′i : _ (26)
Let j, k ∈ {1 . . .m}, w′ such that

Locked(e′j , w
′) ∧ Locked(e′k, w

′) (27)

case j 6= i, k 6= i (28)
(11)+(28)+(27)+(14) ⇒ Locked(ej , w

′) ∧ Locked(ek, w
′) (29)

(29)+(7) ⇒ j = k

case j = i, k 6= i (28)
(11)+(28)+(29)+(14) ⇒ Locked(ek, w

′) (29)

case w 6= w′ (30)
(12)+(13) ⇒ ∀w′′ 6= w : Locked(e′i, w

′′)⇔ Locked(ei, w
′′) (31)

(31)+(30)+(28)+(27) ⇒ Locked(ej , w
′) (32)

(29)+(32)+(7) ⇒ j = k which contradicts (28)

case w = w′ (30)
(29)+(16)+(30) ⇒ k = i which contradicts (28)

�

case j 6= i, k = i (28)
as above

case i = j = k (28)
(28) ⇒ j = k
Thus j = k in all cases (28)

�
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(27)→(28) ⇒ ∀j, k ∈ {1 . . .m}, w′ :
(Locked(e′j , w

′) ∧ Locked(e′k, w
′))⇒ j = k (29)

(11)+(14)+(5) ⇒ ∀j 6= i : Reachable(e′j) (30)

(12)+(13)+(21) ⇒ Reachable(e′i) (31)
(30+(31)+(10) ⇒ ∀i ∈ {1 . . .m} : Reachable(e′i)
(29)+(26) ⇒ h′, σ ` e′1...m

case (1) last was (Unlock) (9)
(9) ⇒ i ∈ {1 . . . n} (10)

m = n (11)
h = h′ (12)
ei = C[syncede′′ w v (13)
e′i = C[v] (14)
∀j 6= i : e′j = ej (15)

(5)+(10)+(13)
+Lemma A28 ⇒ Reachable(syncede′′ w v) (16)
(16) ⇒ V irgin(e′′) (17)
(17) ⇒ ∀σ′ : Active(σ′, syncede′′ w v) = σ′ (18)
(13)+(10)+(6) ⇒ ∅, h, σ ` C[syncede′′ w v] : _ (19)
Lemma A20 ⇒ ∀L′, σ′, F ′ :

L′, h, σ′ ` syncede′′ w v : F ′ ⇒ L′, h, σ′ ` v : F ′ (20)
Lemma A19 ⇒ ∀σ′, t′ : h, σ′ ` syncede′′ w v : t′ ⇒ h, σ′ ` v : t′ (21)
clearly ⇒ syncede′′ w v /∈ Path (22)
(19)+(21)+(20)+(22)
+(18)+Lemma A13 ⇒ ∅, h, σ ` C[v] : _ (23)
(23)+(14)+(15)
+(6)+(11)+(12) ⇒ ∀i ∈ {1 . . .m} : ∅, h′, σ ` e′i : _ (24)
Let j, k ∈ {1 . . . n}, w′

such that Locked(e′j , w
′) ∧ Locked(e′k, w

′) (25)

case j = k = i (26)

(26) ⇒ j = k

case j = i ∧ k 6= i (26)

(26)+(25)+(15) ⇒ Locked(ek, w
′) (27)

case w 6= w′ (28)
(13)+(14) ⇒ ∀w′′ 6= w : Locked(e′i, w

′′)⇔ Locked(ei, w
′′) (29)

(29)+(28)+(25)+(26) ⇒ Locked(ej , w
′) (30)

(25)+(27)+(30)+(7) ⇒ j = k which contradicts (26)

case w = w′ (28)
(28)+(13) ⇒ Locked(ei, w

′) (29)
(29)+(26) ⇒ Locked(ej , w

′) (30)
(25)+(27)+(30)+(7) ⇒ j = k which contradicts (26)

�

case j 6= i ∧ k = i (26)

as above

case j 6= i ∧ k 6= i (26)

(25)+(26)+(15) ⇒ Locked(ej , w
′) ∧ Locked(ek, w

′) (27)
(25)+(27)+(7) ⇒ j = k

�
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Conclude that ∀j, k ∈ {1 . . . n}, w′ :
(Locked(e′j , w

′) ∧ Locked(e′k, w
′))⇒ j = k (26)

(26)+(11) ⇒ ∀j, k ∈ {1 . . .m}, w′ :
(Locked(e′j , w

′) ∧ Locked(e′k, w
′))⇒ j = k (27)

(10)+(5) ⇒ Reachable(C[syncede′′ w v]) (28)
Clearly Reachable(v) (29)
(28)+(29)
+Lemma A28 ⇒ Reachable(C[v]) (30)
(30) ⇒ Reachable(e′i) (31)
(31)+(5)+(15)
+(10)+(11) ⇒ ∀i ∈ {1 . . .m} : Reachable(e′i)
(27)+(24)
+(Threads) ⇒ h′, σ ` e′1...m

�

Lemma 3.6.14 Objects are only accessed while their owners are locked.

L, h, σ ` e : _
σ ` e, h a

 _,_

}
=⇒ (∃l ∈ L : h, σ `gb a : l) ∨

Locked(e, h(a)↓1)

Let L, h, σ ` e : _ (1)

σ ` e, h a
 _,_ (2)

case (1) last was (Frame) (3)
(0) ⇒ e = frame σ′ e′ (4)

σ′ = (a, v) (5)
L′, h, σ ` e′ : _ (6)
L = (h, σ, u, a′, v) L′ (7)
h, σ ` a′ : u_ (8)

(4)+(2)+(Frame1) ⇒ σ′ ` e′, h a
 _,_ (9)

(6)+(9)+IH ⇒ (∃l′ ∈ L′ : h, σ′ `gb a : l′) ∨ Locked(e′, h(a)↓1) (10)

case (10) RHS (11)
(11)+(4) ⇒ Locked(e, h(a)↓1)

case (10) LHS (11)
(11)+(7)+(8)+(5)+Lemma A24 ⇒ ∃l ∈ L : h, σ `gb a : l

�

case (1) last was (Synced) (3)
(3) ⇒ e = syncede0

w e′ (4)
σ′ = h, σ `gb a

′ : l (5)
h(a′)↓1 = w (6)
L ∪ {l}, h, σ ` e′ : _ (7)

(3)+(2)+(Frame) ⇒ σ ` e′, h a
 _,_ (8)

(7)+(8)+IH ⇒ ∃l′ ∈ L ∪ {l} : h, σ `gb a : l′ (10)
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case (10) RHS (11)
(11)+(4) ⇒ Locked(e, h(a)↓1)

case (10) LHS (11)

case l 6=l' (12)
(11)+(10)+(12) ⇒ ∃l′ ∈ L : h, σ `gb a : l′

case l=l' (12)
(5)+(6)+Lemma A15+(11) ⇒ h(a)↓1 = h(a′)↓1 (13)
(4)+(6) ⇒ Locked(e, h(a′)↓1) (14)
(13)+(14) ⇒ Locked(e, h(a)↓1)

�

�

case (1) last was (Cast) (3)
(3) ⇒ e = (t)e′ (4)

L, h, σ ` e′ : _ (5)

(3)+(2) ⇒ σ ` e′, h a
 _,_ (6)

(5)+(6)+IH ⇒ (∃l ∈ L.h, σ `gb a : l) ∨ Locked(e′, h(a)↓1) (7)

case (7) LHS (8)
(8) ⇒ (∃l ∈ L : h, σ `gb a : l) ∨ Locked(e, h(a)↓1)

case (7) RHS (8)
(8)+(4) ⇒ Locked(e, h(a)↓1)

�

case (1) last was (Call) (3)
(3) ⇒ e = e′.m(e′′) (4)

L, h, σ ` e′ : _ (5)
L, h, σ ` e′′ : _ (6)

case (2) last was (Ctx) (7)
as above

case (2) last was (Call) (7)
contradicts (2)

�

case (1) last was (Assign) (3)

case (2) last was (Ctx) (4)
as above

case (2) last was (Assign) (4)
(3) + (4) ⇒ e = a′.f := v

h, σ `gb a
′ : l′

l′ ∈ L

�

case (1) last was (Field) (3)
as (Assign)

case (1) last was (New) (Null) (This) (Var) (Addr) (3)
contradicts (2)

case (1) last was (Sync) (3)
as (Cast)
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case (1) last was (Sub) (3)
(3) ⇒ L′, h, σ ` e : _ (4)

L′ ⊆ L (5)
(4)+(2)+IH ⇒ (∃l′ ∈ L′ : h, σ `gb a : l′) ∨ Locked(e, h, (a)↓1) (6)

case (6) LHS (7)
(5)+(7) ⇒ l′ ∈ L (8)
(7)+(8) ⇒ ∃l′ ∈ L : h, σ `gb a : l′

case (6) RHS (7)
(7) ⇒ (∃l ∈ L : h, σ `gb a : l) ∨ Locked(e, h(a)↓1)

�

�

Theorem 3.6.15 Objects are only accessed while their owners are locked by the corresponding
thread.

h, σ ` e1..n

σ ` e1..n, h
(i,a)
 _,_

}
=⇒ Locked(ei, h(a)↓1)

Let h, σ ` e1..n (1)

σ ` e1..n, h
(i,a)
 _,_ (2)

case (2) last was (Interleave) (3)
(3) ⇒ σ ` ei, h

a
 _,_ (4)

(1) ⇒ ∀i ∈ 1..n : ∅, h, σ ` ei : _ (5)
(4)+(5)+Lemma 3.6.14 ⇒ (∃l ∈ ∅ : h, σ `gb a : l) ∨ Locked(ei, h(a)↓1) (6)
clearly @l ∈ ∅ (7)
(6)+(7) ⇒ Locked(ei, h(a)↓1

�

Lemma A1

h, σ ` e : t
e ∈ { e′.f, (t′)e′, e′.f := e′′, e′′.f := e′, spawn e′,

synce′′ e′ e′′′, synce′′ e′′′ e′, syncede′′ w e′,
e′.m(e′′), e′′.m(e′) }

 =⇒ h, σ ` e′ : _

Let h, σ ` e : t (1)
e ∈ {e′.f, (t′)e′, . . . } (2)

case (1) last was (Field) (3)
(2)+(3) ⇒ e = e′.f (4)

h, σ ` e′ : _

case (1) last was (Assign) (3)
(3) ⇒ e = e′′.f := e′′′ (4)

h, σ ` e′′ : u c (5)
h, σ ` e′′′ : t′′ (6)

(2)+(4) ⇒ e′ = e′′ or e′ = e′′′ (7)
(7)+(5)+(6) ⇒ h, σ ` e′ : _

case (1) last was (Call) (3)
(3) ⇒ e = e′′.m(e′′′) (4)

h, σ ` e′′ : u c (5)
h, σ ` e′′′ : t′′ (6)

(2)+(4) ⇒ e′ = e′′ or e′ = e′′′ (7)
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(7)+(5)+(6) ⇒ h, σ ` e′ : _

case (1) last was (Cast) (3)
(2)+(3) ⇒ e = (t′)e′ (4)

h, σ ` e′ : _

case (1) last was (Spawn) (3)
(2)+(3) ⇒ e = spawn e′ (4)

h, σ ` e′ : _

case (1) last was (Synced) (3)
(2)+(3) ⇒ e = syncede′′ w e′ (4)

h, σ ` e′ : _

case (1) last was (Sync) (3)
(3) ⇒ e = synce′′′ e′′ e′′′′ (4)

h, σ ` e′′ : u c (5)
h, σ ` e′′′ : t′′ (6)

(2)+(4) ⇒ e′ = e′′ or e′ = e′′′ (7)
(7)+(5)+(6) ⇒ h, σ ` e′ : _

�

Lemma A2

L, h, σ ` e : F =⇒ L#F,∀p ∈ L : L, h, σ ` p : _

Let L, h, σ ` e : F (1)

case (1) last was (Var) (This) (Null) (Addr) (New) (Spawn) (2)
(2) ⇒ L = ∅ (3)

F = ∅ (4)
(3)+(4) ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

case (1) last was (Cast) (2)
(2) ⇒ L, h, σ ` e′ : F (3)

e = (t)e′ (4)
(3)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

case (1) last was (Field) (2)
(2) ⇒ e = e′.f (3)

L, h, σ ` e′ : F (4)
(4)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

case (1) last was (Assign) (2)
(2) ⇒ e = e′.f := e′′ (3)

L, h, σ ` e′ : F (4)
(4)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

case (1) last was (Sub) (2)
(2) ⇒ L#F,∀p ∈ L : L, h, σ ` p : _ (3)

case (1) last was (Frame) (2)
(2) ⇒ e = frame σ′ e′ (3)

L, h, σ ` e′ : F (4)
(4)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

case (1) last was (Sync) (2)
(2) ⇒ e = synce′′′ e′ e′′ (3)

L, h, σ ` e′ : F (4)
(4)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _
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case (1) last was (Synced) (2)
(2) ⇒ e = syncede′ w e′′ (3)

L, h, σ ` e′ : F (4)
(4)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

case (1) last was (Call) (2)
(2) ⇒ e = e′.m(e′′) (3)

L, h, σ ` e′ : F (4)
(4)+IH ⇒ L#F,∀p ∈ L : L, h, σ ` p : _

�

Lemma A3

` h
(h, σ, u, e1, e) l = l′

σ ` e1, h e2, h
′

V irgin(e)

 =⇒ (h′, σ, u, e2, e) l = l′

Let ` h (0)
(h, σ, u, e1, e) l = l′ (1)
σ ` e1, h e2, h

′ (2)
V irgin(e) (3)

case l = u′ (4)
(4) ⇒ l′ = u′′ (5)

u′′ = u u′ (6)
u′′ 6= any (7)

(5)+(6)+(7) ⇒ ∀h′, σ, e2, e : (h′, σ, u, e2, e) u = l′ (8)
(8)+(4) ⇒ (h′, σ, u, e2, e) l = l′

case l = x.f1...n (4)
(4) ⇒ l′ = p.f1...n (5)

h, σ `gb e : p (6)
(6)+(3)+(2)+Lemma 3.6.7 ⇒ h′, σ `gb e : p (7)
(4)+(5)+(7) ⇒ (h′, σ,_,_, e) l = l′

case l = this.f1...n (4)
(4) ⇒ l′ = p.f1...n (5)

h, σ `gb e1 : p (6)
(6)+(3)+(2)+Lemma 3.6.4 ⇒ h′, σ `gb e2 : p (7)
(4)+(5)+(7) ⇒ (h′, σ,_, e2,_) l = l′

�

Lemma A4

` h
(h, σ, u, v, e1) l = l′

σ ` e1, h e2, h
′

_, h, σ ` e1 : F
{l′}#F

 =⇒ (h′, σ, u, v, e2) l = l′

Let ` h (1)
(h, σ, u, v, e1) l = l′ (2)
σ ` e1, h e2, h

′ (3)
_, h, σ ` e1 : F (4)
{l′}#F (5)
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case l = this.f1...n (4)
(6) ⇒ l′ = p.f1...n (7)

h, σ `gb v : p (8)
(5)+(7) ⇒ {p}#F (9)
(8)+(3)+(4)+(9)+Lemma 3.6.6 ⇒ h′, σ `gb v : p (10)
(6)+(7)+(10) ⇒ (h′σ,_, v,_) l = l′

case otherwise (4)
Similar to Lemma A3 cases l = u and l = this.f1...n

�

Lemma A5

h, σ ` a : _ c′

h(a)↓2 = c

}
=⇒ c′ ≥ c

Let h, σ ` a : _ c′ (1)
h(a)↓2 = c (2)

case (1) last was (Sub) (3)

(3) ⇒ h, σ ` a : _ c′′ (4)
c′′ ≤ c′ (5)

(4)+(2)+IH ⇒ c′′ ≥ c (6)
(6)+(5) ⇒ c′ ≥ c′′ ≥ c

case (1) last was (Addr) (3)

(3) ⇒ h(a)↓2 = c′ (4)
(4)+(2) ⇒ c′ = c

�

Lemma A6

h, σ ` a : u _
σ′(this) = a
h, σ ` v : t

 =⇒ h, σ′ ` v : u t

Not proved here, this is a general property of universe types.

�

Lemma A7

V irgin(e) =⇒ Reachable(e)

Let V irgin(e) (1)

case e ∈ {x, this, null, new t} (2)
(2) ⇒ Reachable(e)

case e = (t)e′ (2)
(1)+(2) ⇒ V irgin(e′) (3)
(3)+IH ⇒ Reachable(e′) (4)
(4)+(2) ⇒ Reachable(e)

case e = e′.f (2)
(1)+(2) ⇒ V irgin(e′) (3)
(3)+IH ⇒ Reachable(e′) (4)
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(4)+(2) ⇒ Reachable(e)

case e = e′.f := e′′ (2)
(1)+(2) ⇒ V irgin(e′) (3)

V irgin(e′′) (4)
(3)+IH ⇒ Reachable(e′) (5)
(5)+(4)+(2) ⇒ Reachable(e)

case e = e′.m(e′′) (2)
(1)+(2) ⇒ V irgin(e′) (3)

V irgin(e′′) (4)
(3)+IH ⇒ Reachable(e′) (5)
(5)+(4)+(2) ⇒ Reachable(e)

case e = spawn e′ (2)
(1)+(2) ⇒ V irgin(e′) (3)
(3)+(2) ⇒ Reachable(e)

case e = sync e′ e′′ (2)
(1)+(2) ⇒ V irgin(e′) (3)

V irgin(e′′) (4)
(3)+IH ⇒ Reachable(e′) (5)
(5)+(4)+(2) ⇒ Reachable(e)

�

Lemma A8

h, σ ` σ′(this) : u _
h, σ′ ` v : t

}
=⇒ h, σ ` v : u t

Not proved here, this is a general property of universe types.

�

Lemma A9

h, σ ` a : u _
h, σ ` a′ : u′ _
u 6= any

u′ 6= any

u ≤ u′

 =⇒ h(a)↓1 = h(a′)↓1

Let h, σ ` a : u _ (1)
h, σ ` a′ : u′ _ (2)
u 6= any (3)
u′ 6= any (4)
u ≤ u′ (5)

case (1) last was (Addr) and (2) last was (Addr) (6)
(6) ⇒ σ(this) = b (7)

b, h(b)↓1 ` a, h(a)↓1 : u (8)
b, h(b)↓1 ` a′, h(a′)↓1 : u′ (9)
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case u = u′ = rep (10)
(10) ⇒ h(a)↓1 = h(a′)↓1 = b

case u, u′ ∈ {peer, self} (10)
(10) ⇒ h(a)↓1 = h(a′)↓1 = h(b)↓1
case otherwise (10)

Con�ict with (3), (4), (5)

�

case (1) last was (Sub) (6)
(6) ⇒ h, σ ` a : u′′ _ (7)

u′′ ≤ u (8)
(8)+(3) ⇒ u′′ 6= any (9)
(8)+(5) ⇒ u′′ ≤ u′ (10)
(7)+(2)+(9)+(4)+(10)+IH ⇒ h(a)↓1 = h(a′)↓1
case (2) last was (Sub) (6)
(6) ⇒ h, σ ` a′ : u′′ _ (7)

u′′ ≤ u (8)
(8)+(3) ⇒ u′′ 6= any (9)
(9)+(3)+(8)+(5) ⇒ u′′ ≤ u or u ≤ u′′ (10)
(1)+(7)+(3)+(9)+(10)+IH ⇒ h(a)↓1 = h(a′)↓1

�

Lemma A10

(h, σ, u, a, v) l′ = l
σ′ ` e, h _, h′

_, h, σ′ ` e : F
{l}#F

 =⇒ (h′, σ, u, a, v) l′ = l

case l′ = u (1)
Similar to Lemma A3 case l = u′

case l′ = this.f1...n (1)
Similar to Lemma A4 case l = this.f1...n

case l′ = x.f1...n (1)
Similar to Lemma A4 case l = this.f1...n

�

Lemma A11

h, σ ` frame σ′ e′ : t =⇒ h, σ′ ` e′ : _

Let h, σ ` frame σ′ e′ : t (1)

case (1) last was (Sub) (2)
(2) ⇒ h, σ ` frame σ′ e′ : t′ (3)

t′ ≤ t (4)
(3)+IH ⇒ h, σ′ ` e′ : _

case (1) last was (Frame) (2)
(2) ⇒ h, σ′ ` e′ : _

�
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Lemma A12

σ ` e, h e′, h′ =⇒ ∀w : Locked(e, w)⇔ Locked(e′, w)

Let σ ` e, h e′, h′ (1)

case (1) last was (This) (Var) (New) (Field) (Assign) (Cast) (Frame2) (2)
(2) ⇒ ∀w : ¬Locked(e, w)

∀w : ¬Locked(e′, w)

case (1) last was (Frame1) (2)
(2) ⇒ e = frame σ′ e′′ (3)

e′ = frame σ′ e′′′ (4)
σ′ ` e′′, h e′′′, h′ (5)

(4) ⇒ Locked(e, w) = Locked(e′′, w) (6)
(3) ⇒ Locked(e′, w) = Locked(e′′′, w) (7)
(5)+IH ⇒ ∀w : Locked(e′′, w)⇔ Locked(e′′′, w) (8)
(8)+(6)+(7) ⇒ ∀w : Locked(e, w)⇔ Locked(e′, w)

case (1) last was (Ctx) (2)

case E[•] 6= synced . . . (3)
Similar to (Frame1)

case E[•] = synced . . . (3)
(3) ⇒ e = syncede′′ w′ e′′′ (4)

e′ = syncede′′ w′ e′′′′ (5)
σ ` e′′′, h e′′′′, h′ (6)

Let w

case w 6= w′ (7)
Similar to (Frame1)

case w = w′ (7)
(4) ⇒ Locked(e, w) (8)

Locked(e′, w) (9)
(8)+(9) ⇒ Locked(e, w)⇔ Locked(e′, w)

�

�

case (1) last was (Call) (2)
Let w
(2) ⇒ ¬Locked(e, w) (3)

e′ = frame σ′ e′′ (4)
e′′ = M (c,m) (5)

(5) ⇒ ¬Locked(e′′, w) (6)
(4)+(6) ⇒ ¬Locked(e′, w) (7)
(3)+(7) ⇒ Locked(e, w)⇔ Locked(e′, w)

�

Lemma A13

L, h, σ ` C[e] : F
∀t′, σ′ : h, σ′ ` e : t′ ⇒ h, σ′ ` e′ : t′

∀L′, F ′, σ′ : L′, h, σ′ ` e : F ′ ⇒ L′, h, σ′ ` e′ : F ′

e /∈ Path
∀σ′ : Active(σ′, e) = σ′

 =⇒
∃L′′, F ′′ :

L′′, h, Active(σ,C[e]) ` e : F ′′

L, h, σ ` C[e′] : F

Let L, h, σ ` C[e] : F (1)
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∀t′, σ′ : h, σ′ ` e : t′ ⇒ h, σ′ ` e′ : t′ (2)
∀L′, F ′, σ′ : L′, h, σ′ ` e : F ′ ⇒ L′, h, σ′ ` e′ : F ′ (3)
e /∈ Path (4)
∀σ′ : Active(σ′, e) = σ′ (5)

case C[e] = e (6)
(6)+(1) ⇒ L, h, σ ` e : F (7)
(6)+(5) ⇒ Active(σ,C[e]) = σ (8)
(7)+(8) ⇒ L, h, Active(σ,C[e]) ` e : F
(7)+(3) ⇒ L, h, σ ` e′ : F (9)
(9)+(6) ⇒ L, h, σ ` C[e′] : F

case C[e] 6= e (6)

case (1) last was (Frame) (7)
(7) ⇒ C[e] = frame σ′′′ e′′′ (8)

L′′′, h, σ′′′ ` e′′′ : F (9)
σ′′′ = (a, v) (10)
L = (h, σ, u, a, v) L′′′ (11)

(6)+(8) ⇒ e′′′ = C ′[e] (12)
(12)+(9)+(2)+(3)+(4)+(5)+IH ⇒ ∃L′′, F ′′ : L′′, h, Active(σ′′′, C ′[e]) ` e : F ′′ (13)

L′′′, h, σ′′′ ` C ′[e′] : F (14)
(14)+(10)+(11)+(Frame) ⇒ L, h, σ ` frame σ′′′ C ′[e′] : F (15)
(15)+(8)+(12) ⇒ L, h, σ ` C[e′] : F
(8)+(12)+(13) ⇒ ∃L′′, F ′′ : L′′, h, Active(_, C[e]) ` e : F ′′

case (1) last was (Call) (7)
(7) ⇒ C[e] = e′′′.m(e′′′′) (8)

L, h, σ ` e′′′ : F (9)
L, h, σ ` e′′′′ : F (10)
h, σ ` e′′′ : u c (11)
Eff (c,m)↓2 ⊆ F (12)
L′ ∈ Eff (c,m)↓1 (13)
(h, σ, u, e′′′, e′′′′) L′ ⊆ L (14)

case e′′′ = C ′[e] (15)
(15)+(9)+(2)+(3)
+(4)+(5)+IH ⇒ ∃L′′, F ′′ : L′′, h, Active(σ,C[e]) ` e : F ′′ (16)

L, h, σ ` C ′[e′] : F (17)
(8)+(15) ⇒ Active(σ,C ′[e]) = Active(σ,C[e]) (18)
(15)+(11)+(2)+Lemma A14 ⇒ h, σ ` C ′[e′] : u c (19)
(4)+(15)+(14) ⇒ ∀e1, e2 : (h, σ, u, e1, e2) L′ ⊆ L (20)
(17)+(10)+(19)+(12)+(13)
+(20)+(Call) ⇒ L, h, σ ` C ′[e′].m(e′′′′) : F (21)
(21)+(15)+(8) ⇒ L, h, σ ` C[e′] : F
(16)+(18) ⇒ ∃L′′, F ′′ : L′′, h, Active(σ,C[e]) ` e : F ′′

case e′′′′ = C ′[e] (15)
Very similar.

�
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case (1) last was (Assign) (7)
(7) ⇒ C[e] = e′′′.f := e′′′′ (8)

L, h, σ ` e′′′ : F (9)
L, h, σ ` e′′′′ : F (10)
h `gb σ : e′′′l (11)
l ∈ L (12)
f ∈ F (13)

case e′′′ = C ′[e] (14)
(14)+(9)+(2)+(3)
+(4)+(5)+IH ⇒ ∃L′′, F ′′ : L′′, h, Active(σ,C ′[e]) ` e : F ′′ (15)

L, h, σ ` C ′[e] : F (16)
(4)+(2)+(14)
+(11)+Lemma A21 ⇒ h, σ `gb C

′[e] : l (17)
(16)+(17)+(10)+(12)
+(13)+(Assign) ⇒ L, h, σ ` C ′[e].f := e′′′′ : F (18)
(18)+(8)+(14) ⇒ L, h, σ ` C[e′] : F
(8)+(14) ⇒ Active(σ,C ′[e]) = Active(σ,C[e]) (19)
(15)+(19) ⇒ ∃L′′, F ′′ : L′′, h, Active(σ,C[e]) ` e : F ′′

case e′′′′ = C ′[e] (14)
Very similar.

�

case (1) last was (Field) (7)
Similar to (Assign)

case (1) last was (Sync) (7)
Similar to (Assign)

case (1) last was (Synced) (7)
Similar to (Assign)

case (1) last was (Cast) (7)
Similar to (Assign)

case (1) last was (Sub) (7)
(7) ⇒ L′′′, h, σ ` e : F ′′′ (8)

L′′′ ⊆ L (9)
F ′′′ ⊆ F (10)
L#F (11)
∀p ∈ L : L, h, σ ` p : _ (12)

(8)+(2)+(3)+(4)+(5)+IH ⇒ ∃L′′, F ′′ : L′′, h, Active(σ,C[e]) ` e : F ′′

L′′′, h, σ ` C[e′] : F ′′′ (13)
(13)+(9)+(10)+(11)+(12) ⇒ L, h, σ ` C[e′] : F

case (1) last was (Var) (This) (Addr) (Null) (New) (Spawn) (7)
Contradicts (6)

�

�

Lemma A14

∀t′, σ′ : h, σ′ ` e : t′ ⇒ h, σ′ ` e′ : t′

h, σ ` C[e] : t

}
=⇒ h, σ ` C[e′] : t

Let ∀t′, σ′ : h, σ′ ` e : t′ ⇒ h, σ′ ` e′ : t′ (1)
h, σ ` C[e] : t (2)
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case C[e] = e (3)
(3)+(2) ⇒ h, σ ` e : t (4)
(4)+(1) ⇒ h, σ ` e′ : t (5)
(3)+(5) ⇒ h, σ ` C[e′] : t

case C[e] 6= e (3)

case (2) last was (Frame) (4)
(4) ⇒ C[e] = frame σ′′ e′′ (5)

h, σ′′ ` e′′ : t′′ (6)
h, σ′′ ` σ′′(this) : u _ (7)
t = u t′′ (8)

(5)+(3) ⇒ ∃c′′ : e′′ = C ′′[e] (9)
(1)+(6)+(9)+IH ⇒ h, σ ` C ′′[e′] : t′′ (10)
(10)+(7)+(8)+(Frame) ⇒ h, σ ` frame σ′′ C ′′[e′] : t (11)
(11)+(9)+(5) ⇒ h, σ ` C[e′] : t

case (2) last was (Call) (4)
(4) ⇒ C[e] = e′′.m(e′′′) (5)

h, σ ` e′′ : u c (6)
M (c,m) = t m(u ta) (7)
h, σ ` e′′′ : ta (8)

case e′′ = C ′[e] (9)
(6)+(9)+(1)+IH ⇒ h, σ ` C ′[e′] : u c (10)
(10)+(7)+(8)+(Call) ⇒ h, σ ` C ′[e′].m(e′′′) : t (11)
(11)+(5)+(9) ⇒ h, σ ` C[e′] : t

case e′′′ = C ′[e] (9)
very similar

�

case (2) last was (Field) (Sync) (Assign) (Synced) (Cast) (4)
Similar to (Call)

case (2) last was (Sub) (4)
(4) ⇒ h, σ ` C[e] : t′ (5)

t′ < t (6)
(5)+(1)+IH ⇒ h, σ ` C[e′] : t′ (7)
(7)+(6)+(Sub) ⇒ h, σ ` C[e′] : t

case (2) last was (Null) (Var) (This) (Addr) (New) (Spawn) (4)
Contradict (3)

�

�

Lemma A15

h, σ `gb a : l
h(a)↓1 = w

}
=⇒ ∀a′ : h, σ `gb a

′ : l⇒ h(a′)↓1 = w

Let h, σ `gb a : l (1)
h(a)↓1 = w (2)
h, σ `gb a

′ : l (3)

case (1) last was (Univ) (4)
(4) ⇒ l = u (5)

h, σ ` a : u _ (6)
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u 6= any (7)
(7)+(5)+(4)+(3) ⇒ h, σ ` a′ : u _ (8)
(6)+(7)+(8)+Lemma A26 ⇒ h(a)↓1 = h(a′)↓1 (9)
(2)+(9) ⇒ h(a′)↓1 = w (10)

case (1) last was (Val) (4)
(4) ⇒ l = p (5)

h(σ, p) = a (6)
(5)+(4)+(3) ⇒ h(σ, p) = u′ (7)
(6)+(7) ⇒ a = a′ (8)
(8)+(2)+ ⇒ h(a′)↓1 = w (9)

�

Lemma A16

h, σ ` synce a e
′ : t

h(a)↓1 = w

}
=⇒ h, σ ` syncede w e′ : t

Let h, σ ` synce a e
′ : t (1)

h(a)↓1 = w (2)

case (1) last was (Sub) (3)
(3) ⇒ h, σ ` synce a e

′ : t′ (4)
t′ ≤ t (5)

(4)+(2)+IH ⇒ h, σ ` syncede w e′ : t′ (6)
(6)+(5)+(Sub) ⇒ h, σ ` syncede w e′ : t

case (1) last was (Sync) (3)
(3) ⇒ h, σ ` e′ : t (4)
(4)+(Synced) ⇒ h, σ ` syncede a e

′ : t

�

Lemma A17

L, h, σ ` synce a e
′ : F

w = h(a)↓1

}
=⇒ L, h, σ ` syncede w e′ : F

Let L, h, σ ` synce a e
′ : F (1)

w = h(a)↓1 (2)

case (1) last was (Sub) (3)
(3) ⇒ L′, h, σ ` synce a e

′ : F ′ (4)
L′ ⊆ L (5)
F ′ ⊆ F (6)
L#F,∀p ∈ L : L, h, σ ` p : _ (7)

(4)+(2)+IH ⇒ L′, h, σ ` syncede w e′ : F ′ (8)
(8)+(5)+(6)+(7)+(Sub) ⇒ L, h, σ ` syncede w e′ : F

case (1) last was (Sync) (3)
(3) ⇒ h, σ `gb e : l (4)

h, σ `gb a : l (5)
L ∪ {l}, h, σ ` e′ : F (6)
L, h, σ ` e : F (7)

(2)+(7)+(5)+(4)+(6)+(Synced) ⇒ L, h, σ ` syncede w e′ : F

�
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Lemma A18

(h, σ, u, e, e′) l = l′

_ ` _, h _, h′

V irgin(e)
V irgin(e′)

 =⇒ (h, σ, u, e, e′) l = l′

Let (h, σ, u, e, e′) l = l′ (1)
_ ` _, h _, h′ (2)
V irgin(e) (3)
V irgin(e′) (4)

case l = u′ (5)
(5) ⇒ l′ = u u′ (6)

l′ = any (7)
(5)+(6)+(7) ⇒ (h′, σ, u, e, e′) l = l′

case l = x.f1...n (5)
(5) ⇒ l′ = l[p/x] (6)

h, σ `gb e
′ : p (7)

(7)+(4)+(2)+Lemma 3.6.7 ⇒ h′, σ `gb e
′ : p (8)

(5)+(8)+(6) ⇒ (h, σ, u, e, e′) l = l′

case l = this.f1...n (5)
(5) ⇒ l′ = l[p/this] (6)

h, σ `gb e : p (7)
(7)+(3)+(2)+Lemma 3.6.7 ⇒ h′, σ `gb e : p (8)
(5)+(8)+(6) ⇒ (h, σ, u, e, e′) l = l′

�

Lemma A19

h, σ ` syncede w v : t =⇒ h, σ ` v : t

Let h, σ ` syncede w v : t (1)

case (1) last was (Sub) (()
2) (2) ⇒ h, σ ` syncede w v : t′ (3)

t′ ≤ t (4)
(3)+IH ⇒ h, σ ` v : t′ (5)
(5)+(4)+(Sub) ⇒ h, σ ` v : t

case (1) last was (Synced) (()
2) (2) ⇒ h, σ ` v : t

�

Lemma A20

L, h, σ ` e : F =⇒ ∀v : L, h, σ ` v : F

Let L, h, σ ` e : F (1)
(1)+Lemma A2 ⇒ L#F (2)

∀p ∈ L : L, h, σ ` p : _ (3)
(Null) +(Addr) ⇒ ∀v : ∅, h, σ ` v : ∅ (4)
(4)+(2)+(3)+(Sub) ⇒ ∀v : L, h, σ ` v : F

�
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Lemma A21

e ∈ Path
∀σ′, t′ : h, σ′ ` e′ : t′

h, σ `gb C[e] : l

 =⇒ h, σ `gb C[e′] : l

Let e ∈ Path (1)
∀σ′, t′ : h, σ′ ` e′ : t′ (2)
h, σ `gb C[e] : l (3)

case (3) last was (Path) (4)
Contradicts (1)

case (3) last was (Univ) (4)
(4) ⇒ h, σ ` C[e] : u c (5)

u 6= any (6)
l = u (7)

(2)+(5)+Lemma A14 ⇒ h, σ ` C[e′] : u c (8)
(8)+(6)+(7)+(Univ) ⇒ h, σ ` C[e′] : l

�

Lemma A22

L, h, σ ` p.f : F =⇒ L, h, σ ` p : F

Let L, h, σ ` p.f : F (1)

case (1) last was (Sub) (2)
(2) ⇒ L′, h, σ ` p.f : F ′ (3)

L′ ⊆ L (4)
F ′ ⊆ F (5)
L#F (6)

(3)+IH ⇒ L′, h, σ ` p : F ′ (7)
(7)+(4)+(5)+(6)+(Sub) ⇒ L, h, σ ` p : F (8)

case (1) last was (Field) (2)
(2) ⇒ L, h, σ ` p : F

�

Lemma A23

(h, σ, u, e′, e′′) l′ = l
σ′ ` e, h _, h′

∅, h, σ′ ` e : _
{h(a)↓1|h, σ ` a : l, l ∈ L} ∩ {w|Locked(e, w)} = ∅
l ∈ L
∀p ∈ L : L, h, σ ` p : _


=⇒ (h′, σ, u, e′, e′′) l′ = l

Let (h, σ, u, e′, e′′) l′ = l (1)
σ′ ` e, h _, h′ (2)
∅, h, σ′ ` e : _ (3)
{h(a)↓1|h, σ ` a : l, l ∈ L} ∩ {w|Locked(e, w)} = ∅ (4)
l ∈ L (5)
∀p ∈ L : L, h, σ ` p : _ (6)

case l′ = p′ (7)
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case p′ = x.f1...n (8)
(1)+(7)+(8) ⇒ l = p′[p′′/x] (9)

h, σ `gb e
′′ : p′′ (10)

(7)+(8)+(9) ⇒ l = p′′.f1...n (11)
(9)+(5)+(6) ⇒ L, h, σ ` l : _ (12)
(11)+(12)+Lemma A22 ⇒ L, h, σ ` p′′ : _ (13)
(10)+(2)+(3)+(4)+(13)+Lemma 3.6.10 ⇒ h′, σ `gb e

′′ : p′′ (14)
(8)+(14)+(9)+(7) ⇒ (h′, σ, u, e′, e′′) l′ = l

case p′ = this.f1...n (8)
Very similar

�

case l′ = u′ (7)
(7)+(1) ⇒ l = u u′ (8)

l 6= any (9)
(8)+(9) ⇒ (h′, σ, u, e′, e′′) l′ = l

�

Lemma A24

h, σ′ `gb a
′ : l′

l = (h, σ, u, a, v) l′

h, σ ` a : u _
σ′ = (a, v)

 =⇒ h, σ `gb a
′ : l

Let h, σ′ `gb a
′ : l′ (1)

l = (h, σ, u, a, v) l′ (2)
h, σ ` a : u _ (3)
σ′ = (a, v) (4)

case (1) last was (Univ) (5)
(5) ⇒ l′ = u′ (6)

h, σ′ ` a′ : u′ _ (7)
u 6= any (8)

(6)+(2) ⇒ l = u′′ (9)
u′′ = u u′ (10)
u′′ 6= any (11)

(3)+(4)+(7)+(10)+Lemma A8 ⇒ h, σ ` a′ : u′′ _ (12)
(12)+(9)+(11)+(Univ) ⇒ h, σ `gb a

′ : l

case (1) last was (Val) (5)
(5) ⇒ l′ = p′ (6)

h(σ′, p′) = a′ (7)

case p′ = x.f1...n (8)
(6)+(8)+(2) ⇒ l = p′[p/x] (9)

h, σ `gb v : p (10)
(10)+(Val) ⇒ h(σ, p) = v (11)
(4) ⇒ h(σ′, x) = v (12)
(11)+(12)+(7) ⇒ h(σ, l) = a′ (13)
(13)+(Val) ⇒ h, σ `gb a

′ : l

case p′ = this.f1...n (8)
Very Similar

�

�
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Lemma A25

∀p ∈ L : L, h, σ ` p : _
_ ` _, h _, h′

}
=⇒ ∀p ∈ L : L, h′, σ ` p : _

Let ∀p ∈ L : L, h, σ ` p : _ (1)
_ ` _, h _, h′ (2)

Let p ∈ L (3)
(3) ⇒ V irgin(p) (4)
(1)+(3) ⇒ L, h, σ ` p : _ (5)
(4)+(5)+(2)+Lemma 3.6.8 ⇒ L, h′, σ ` p : _ (6)

(3)→(6) ⇒ ∀p ∈ L : L, h′, σ ` p : _

�

Lemma A26

h, σ ` a : u _
h, σ ` a′ : u′ _
u, u′ 6= any

u = rep⇔ u′ = rep

 =⇒ h(a)↓1 = h(a′)↓1

Let h, σ ` a : u _ (1)
h, σ ` a′ : u′ _ (2)
u, u′ 6= any (3)
u = rep⇔ u′ = rep (4)

case (1) last was (Sub) (5)
(5) ⇒ h, σ ` a : u′′ _ (6)

u′′ ≤ u (7)

case u = rep (8)
(8)+(4) ⇒ u′ = rep (9)
(8)+(7) ⇒ u′′ = rep (10)
(9)+(10) ⇒ u′′ = rep⇔ u′ = rep (11)
(9)+(10) ⇒ u, u′ 6= any (12)
(6)+(2)+(12)+(11)+IH ⇒ h(a)↓1 = h(a′)↓1
case u 6= rep (8)
(3)+(8)+(7) ⇒ u′′ 6= rep (9)

u′′ 6= any (10)
(8)+(4) ⇒ u′ 6= rep (11)
(9)+(11) ⇒ u′′ = rep⇔ u′ = rep (12)
(6)+(2)+(10)+(3)+(12)+IH ⇒ h(a)↓1 = h(a′)↓1

�

case (2) last was (Sub) (5)
As above

case (1) and (2) last were (Addr) (5)
(5) ⇒ a′′, v ` a, h(a)↓1 : u (6)

a′′, v ` a′, h(a′)↓1 : u′ (7)
a′′ = σ(this) (8)
v = h(a′′)↓1 (9)
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case u = rep (10)
(10)+(4) ⇒ u′ = rep (11)
(6)+(7)+(11) ⇒ h(a)↓1 = h(a′)↓1 = a′′

case u 6= rep (10)
(10)+(4) ⇒ u′ 6= rep (11)
(10)+(11)+(3) ⇒ u, u′ ∈ {peer, self} (12)
(6)+(7)+(12) ⇒ h(a)↓1 = h(a′)↓1 = v

�

�

Lemma A27

V irgin(e)
h, σ `gb e : p

}
=⇒ p = e

Let V irgin(e) (1)
h, σ `gb e : p (2)

case (2) last was (Field) (3)
(3) ⇒ e = p′.f (4)

p = p′′.f (5)
h, σ `gb p

′ : p′′ (6)
(4)+(1) ⇒ V irgin(p′) (7)
(7)+(6)+IH ⇒ p′ = p′′ (8)
(8)+(4)+(5) ⇒ p = e

case (2) last was (Var) (3)
(3) ⇒ e = p

case (2) last was (Val) (3)
(3) ⇒ e = a (4)
(4) ⇒ ¬V irgin(e) (contradiction)

�

Lemma A28

e 6= v
Reachable(C[e])
Reachable(e′)

 =⇒ Reachable(C[e′])
Reachable(e)

Let e 6= v (1)
Reachable(C[e]) (2)
Reachable(e′) (3)

case C[e] = (t)C ′[e] (4)
(4)+(2) ⇒ Reachable(C ′[e]) (5)
(1)+(5)+(3)+IH ⇒ Reachable(C ′[e′]) (6)

Reachable(e)
(6)+(4) ⇒ Reachable(C[e′])

case C[e] ∈ {C ′[e].f, v.f := C ′[e], v.m(C ′[e]), synce0
C ′[e] e1} (4)

Similar to above

case C[e] ∈ {syncede0
w C ′[e], frame σ C ′[e]} (4)

Similar to above

case C[e] = C ′[e].f := e′′ (4)
(4)+(2) ⇒ (Reachable(C ′[e]) ∧ V irgin(e′′)) ∨ (C ′[e] = v ∧Reachable(e′′)) (5)
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case LHS of (5) (6)
(6) ⇒ Reachable(C ′[e]) (7)

V irgin(e′′) (8)
(1)+(7)+(3)+IH ⇒ Reachable(C ′[e′]) (9)

Reachable(e)
(9)+(4)+(8) ⇒ Reachable(C[e′])

case RHS of (5) (6)
(6) ⇒ C ′[e] = v (7)

Reachable(e′′) (8)
(7) ⇒ e = v (9)
(9) contradicts (1)

case C[e] = C ′[e].m(e′′) (4)
Similar to above

�

Lemma A29

Γ `gb e : l
h, σ ` x : Γ(x)
h, σ ` this : Γ(this)

 =⇒ h, σ `gb S(e) : l

Let Γ `gb e : l (1)
h, σ ` x : Γ(x) (2)
h, σ ` this : Γ(this) (3)

case (1) last was (Univ) (4)
(4) ⇒ Γ ` e : u _ (5)

u 6= any (6)
u = l (7)

(5)+(2)+(3)+Lemma 3.5.5 ⇒ h, σ ` S(e) : u _ (8)
(8)+(6)+(7)+(Univ) ⇒ h, σ `gb S(e) : l

case (1) last was (Path) (4)
(4) ⇒ e = l = p (5)

case p = x (6)
(5)+(6) ⇒ e = l = x (7)
(7)+(Var) ⇒ h, σ `gb e : l (8)
(7) ⇒ S(e) = e (9)
(8)+(9) ⇒ h, σ `gb S(e) : l

case p = this (6)
Similar to p = x

case p = p′.f (6)
(Path) ⇒ Γ `gb p

′ : p′ (7)
(7)+(2)+(3)+IH ⇒ h, σ `gb S(p′) : p′ (8)
(6)+(8)+(Field) ⇒ h, σ `gb S(p′).f : p (9)
(6) ⇒ S(p) = S(p′).f (10)
(9)+(10) ⇒ h, σ `gb S(p) : p

�

�
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Lemma A30

l = (u, e, e′) l′

h, σ ` x : Γ(x)
h, σ ` this : Γ(this)

 =⇒ (h, σ, u, S(e), S(e′)) l′ = l

Let l = (u, e, e′) l′ (1)
h, σ ` x : Γ(x) (2)
h, σ ` this : Γ(this) (3)

case l′ = u′ (4)
(1)+(4) ⇒ l = u u′ (5)
(4)+(5) ⇒ ∀h, σ, S(e), S(e′) : (h, σ, u, S(e), S(e′)) l′ = l

case l′ = x.f1...n (4)
(1)+(4) ⇒ e′ = p′ (5)

l = l′[p′/x] (6)
(Path) ⇒ Γ `gb p

′ : p′ (7)
(7)+(2)+(3)+Lemma A29 ⇒ h, σ `gb S(p′) : p′ (8)
(5) ⇒ S(e′) = S(p′) (9)
(8)+(9) ⇒ h, σ `gb S(e′) : p′ (10)
(6)+(4)+(10) ⇒ ∀u, S(e) : (h, σ, a, S(e), S(e′)) l′ = l

case l′ = this.f1...n (4)
Similar to x.f1...n

�

Lemma A31

L, h, σ; spawn e : F =⇒ ∅, h, σ ` e : _

Let L, h, σ; spawn e : F (1)

case (1) last was (Sub) (2)
(2) ⇒ L′, h, σ ` spawn e : F ′ (3)
(3)+IH ⇒ ∅, h, σ ` e : _

case (1) last was (Spawn) (2)
(2) ⇒ ∅, h, σ ` e : _

�

Lemma A32

_, h, σ ` e : F
σ ` e, h e′, h′

h(a)↓3(f) 6= h′(a)↓3(f)

 =⇒ f ∈ F

Let _, h, σ ` e : F (1)
σ ` e, h e′, h′ (2)
h(a)↓3(f) 6= h′(a)↓3(f) (3)

case (1) last was (This) (Var) (Null) (4)
h = h′, thus contradicts (3)

case (1) last was (Addr) (Spawn) (4)
Contradicts (2)

case (1) last was (New) (4)
(4) ⇒ a′ /∈ dom(h) (5)

∀f, a′′ 6= a′ : h(a′′)↓3(f) = h′(a′′)↓3(f) (6)
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(5)+(3) ⇒ a′ 6= a (7)
(7)+(6) ⇒ h(a)↓3(f) = h′(a)↓3(f) (8)
(8)+(3) ⇒ contradiction

case (1) last was (Sub) (4)
(4) ⇒ _, h, σ ` e : F ′ (5)

F ′ ⊆ F (6)
(5)+(2)+(3)+IH ⇒ f ∈ F ′ (7)
(7)+(6) ⇒ f ∈ F

case (1) last was (Sync) (4)
(4) ⇒ e = synce′ e′′ e′′′ (5)

_, h, σ ` e′′ : F (6)
(5)+(3)+(Ctx) ⇒ σ ` e′′, h e′′′′, h′ (7)
(6)+(7)+(3)+IH ⇒ f ∈ F

case (1) last was (Field) (4)
In one case, h = h′, in the other case proceed as in (Sync)

case (1) last was (Call) (Cast) (Synced) (Frame) (4)

As (Field)

case (1) last was (Assign) (4)
(4) ⇒ e = e′′.f ′ := e′′′ (5)

f ′ ∈ F (6)

case e′′ = a′ (7)
(7) ⇒ e′ = e′′′ = v (8)

h′ = h[a′↓3(f ′) 7→ v] (9)
(9)+(3) ⇒ a = a′ ∧ f = f ′ (10)
(10)+(6) ⇒ f ∈ F

case e = E[•] (8)
Case analysis of E, proceed in each case via IH

�

�



Appendix B

Correctness of Path Graph Analysis

Here we give the Isabelle/HOL ProofGeneral script that de�nes the semantics of a model
CFG language, our analysis on the CFG, and a correctness theorem. We then give the
correctness proof. The syntax is as close as we could manage to the earlier presentation
(�4.4). For example, we had to use two dots in �eld loads / stores, e.g. x..f because the
single dot is used by Isabelle/HOL as part of its quanti�cation syntax.

theory PG imports Main Nat List

begin

(********************************** PROGRAMS *********************************)

types node = nat

datatype field = ff | fg | fh | Field nat

datatype var = vx | vy | vz | Var nat

datatype st = Copy var var node ("[_:=_,_]")

| FLoad var var field node ("[_=_.._,_]")

| FStore var field var node ("[_.._=_,_]")

| New var node ("[_=new,_]")

| Branch node node ("[?,_,_]")

types prog = "node ~=> st"

(********************************** RUN-TIME *********************************)

types addr = nat

datatype val = Null

| Addr addr ("$_")

types heap = "addr ~=> field \<Rightarrow> val"

types stack = "var ~=> val"

(********************************* SEMANTICS *********************************)

types action = "addr option"

204
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consts filter_addr :: "addr \<Rightarrow> (action list)

\<Rightarrow> (action list)"

defs filter_addr[simp]: "filter_addr a A ==

(map (\<lambda>x. if x=Some a then None else x) A)"

consts accesses :: "(prog * heap * stack * node * (action list))

\<Rightarrow> bool"

recdef accesses "measure(\<lambda>(P,h,s,n,A). length A)"

"accesses (P, h, s, n, []) = True"

"accesses (P, h, s, n, (act#A)) = (case P n of

Some st \<Rightarrow> (case st of

[x:=y, n'] \<Rightarrow> (case s y of

Some v \<Rightarrow> (act=None) & accesses (P,h,(s(x:=Some v)),n',A)

| None \<Rightarrow> False

)

| [x=y .. f, n'] \<Rightarrow> (case s y of

Some u \<Rightarrow> (case u of

$a \<Rightarrow> (case h a of

Some fs \<Rightarrow> ((act=Some a)

& accesses (P,h,(s(x:=Some (fs f))),n',A))

| None \<Rightarrow> False

)

| Null \<Rightarrow> False

)

| None \<Rightarrow> False

)

| [x .. f=y, n'] \<Rightarrow> (case s y of

Some y' \<Rightarrow> (case s x of

Some x' \<Rightarrow> (case x' of

$a \<Rightarrow> (case h a of

Some fs \<Rightarrow>

( (act=Some a) & accesses (P,

(h(a:=Some(fs(f:=y')))),

s,n',A) )

| None \<Rightarrow> False

)

| Null \<Rightarrow> False

)

| None \<Rightarrow> False

)

| None \<Rightarrow> False

)

| [x=new,n'] \<Rightarrow> (

(act = None) &

(\<exists>a.

((h a) = None) &

(\<exists>A'. accesses (P,

(h(a:=Some (\<lambda>f. Null))),

(s(x:=Some $a)), n', A')

& A = filter_addr a A')

)

)

| [?,n',n''] \<Rightarrow> (

(act = None) &
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(accesses (P, h, s, n', A) | accesses (P, h, s, n'', A))

)

)

| None \<Rightarrow> False

)"

(hints recdef_cong: rev_conj_cong)

(* sanity *)

consts MyProg :: prog

defs MyProg_def[simp]: "MyProg == [1\<mapsto>[vx=new,2],

2\<mapsto>[vx:=vy,3],

3\<mapsto>[vz .. ff=vz,4]]"

lemma "(b~=Some a & c~=Some a) \<longrightarrow> (filter_addr a [b,c] = [b,c])"

by simp

lemma "(b~=Some a) \<longrightarrow> (filter_addr a [b,Some a] = [b,None])"

by (simp)

lemma "accesses (MyProg,

[a\<mapsto>(\<lambda>f. Null)],

[vz\<mapsto>$a],

3,

[Some a])"

by (simp)

lemma always_another_address1[simp]: "(EX aa::addr . a ~= aa)"

apply(rule_tac x = "Suc(a)" in exI)

apply(simp)

done

lemma always_another_address2[simp]: "(EX aa::addr . aa ~= a)"

apply(rule_tac x = "Suc(a)" in exI)

by (simp)

lemma "accesses (MyProg,

[a\<mapsto>(\<lambda>f. Null)],

[vz\<mapsto>$a,vy\<mapsto>$b],

1,

[None,None,Some a])"

apply(auto)

apply(rule_tac ?x="Suc(a)" in exI)

apply(auto)

apply(rule_tac ?x="[None, Some a]" in exI)

apply(simp)

done

(********************************** ANALYSIS **********************************)
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datatype edge = VarEdge var node (infix "\<rightarrow>" 100)

| FieldEdge node field node ("_\<rightarrow>_\<rightarrow>_" 100)

types pgraph = "edge set"

types analysis = "node \<Rightarrow> pgraph"

consts access:: "node \<Rightarrow> st \<Rightarrow> pgraph"

defs access_def[simp]: "access n st == case st of

[x:=y,n'] \<Rightarrow> {}

| [x=y .. f,n'] \<Rightarrow> {y\<rightarrow>n}

| [x .. f=y,n'] \<Rightarrow> {x\<rightarrow>n}

| [x=new,n'] \<Rightarrow> {}

| [?,n',n''] \<Rightarrow> {}"

consts translate:: "node \<Rightarrow> st \<Rightarrow> analysis

\<Rightarrow> pgraph"

defs translate_def[simp]: "translate n st X == case st of

[x:=y,next] \<Rightarrow> ((X next)

- {x\<rightarrow>n' |

n'. x\<rightarrow>n'\<in>(X next)})

\<union> {y\<rightarrow>n' |

n'. x\<rightarrow>n'\<in>(X next)}

| [x=y .. f,next] \<Rightarrow> ((X next)

- {x\<rightarrow>n' |

n'. x\<rightarrow>n'\<in>(X next)})

\<union> {n\<rightarrow>f\<rightarrow>n' |

n'. x\<rightarrow>n'\<in>(X next)}

| [x .. f=y,next] \<Rightarrow> ((X next) - {e. \<exists>n' n''.

(e=(n'\<rightarrow>f\<rightarrow>n''))

& x\<rightarrow>n'\<in>(X next)

& \<not>(\<exists>z.(z~=x) &

z\<rightarrow>n'\<in>(X next))

& \<not>(\<exists>n''' f.

(n'''\<rightarrow>f\<rightarrow>n')

\<in>(X next))})

\<union>

{y\<rightarrow>n' |

n'. (\<exists>n'' .

(n''\<rightarrow>f\<rightarrow>n')

\<in>(X next))}

| [x=new,next] \<Rightarrow> (X next)

- {x\<rightarrow>n' |

n'. x\<rightarrow>n'\<in>(X next)}

| [?,tnext,fnext] \<Rightarrow> (X tnext) \<union> (X fnext)

"

consts wfpgraph:: "prog \<Rightarrow> analysis \<Rightarrow> node

\<Rightarrow> bool"

defs wfpgraph_def[simp]: "wfpgraph P X n == case P n of
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Some st \<Rightarrow> (X n) = (access n st) \<union> (translate n st X)

| None \<Rightarrow> True"

consts wfanalysis:: "prog \<Rightarrow> analysis \<Rightarrow> bool"

(infix "\<turnstile>" 95)

defs wfanalysis_def: "P\<turnstile>X == \<forall>n. wfpgraph P X n"

(*

(* sanity *)

consts anal0:: analysis

defs anal0[simp]: "anal0 == \<lambda>n.{}"

lemma "wfanalysis MyProg (anal0(1:={vz\<rightarrow>3},

2:={vz\<rightarrow>3},

3:={vz\<rightarrow>3}))"

by (simp add: wfanalysis_def)

lemma "wfanalysis [1\<mapsto>[vy=new,2],

2\<mapsto>[vx:=vy,3],

3\<mapsto>[vx .. f=vz,4]]

(anal0(2:={vy\<rightarrow>3}, 3:={vx\<rightarrow>3}))"

by (simp add: wfanalysis_def)

lemma "wfanalysis [1\<mapsto>[vx=new,2],

2\<mapsto>[vx:=vy,3],

3\<mapsto>[vx .. f=vz,4]]

(anal0(1:={vy\<rightarrow>3},

2:={vy\<rightarrow>3},

3:={vx\<rightarrow>3}))"

by (simp add: wfanalysis_def)

*)

(********************************** SOUNDNESS *********************************)

types pgass = "node \<Rightarrow> (addr set)"

consts pgassle :: "pgass \<Rightarrow> pgass \<Rightarrow> bool"

(infixl "\<sqsubseteq>" 65 )

defs pgassle_def: "\<phi> \<sqsubseteq> \<phi>'

== \<forall>n. (\<phi> n) \<subseteq> (\<phi>' n)"

consts pgassinter :: "pgass \<Rightarrow> pgass \<Rightarrow> pgass"

(infixl "\<sqinter>" 65 )

defs pgassinter_def: "\<phi> \<sqinter> \<phi>'

== \<lambda>n. (\<phi> n) \<inter> (\<phi>' n)"

consts pgassInter :: "pgass set \<Rightarrow> pgass" ("\<Sqinter> _" 65 )

defs pgassInter_def: "\<Sqinter> \<phi>s
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== \<lambda>n. \<Inter> { (\<phi> n) |

\<phi>. \<phi>\<in>\<phi>s }"

constdefs \<phi>0:: "pgass"

"\<phi>0 == \<lambda>n. {}"

lemma \<phi>0_le[simp]: "\<phi>0 \<sqsubseteq> \<phi>"

apply(simp add: pgassle_def \<phi>0_def)

done

lemma \<phi>0_union1[simp]: "\<phi> \<sqinter> \<phi>' \<sqsubseteq> \<phi>"

apply(simp add: pgassinter_def subset_def pgassle_def)

done

lemma \<phi>0_union2[simp]: "\<phi> \<sqinter> \<phi>' \<sqsubseteq> \<phi>'"

apply(simp add: pgassinter_def subset_def pgassle_def)

done

lemma \<phi>0_union_id[simp]: "\<phi> \<sqinter> \<phi> = \<phi>"

apply(simp add: pgassinter_def subset_def)

done

lemma pgass_ref[simp]: "\<phi> \<sqsubseteq> \<phi>"

apply(simp add: pgassle_def)

done

lemma pgass_id[simp]: "\<phi> \<sqsubseteq> \<phi>0

\<Longrightarrow> \<phi>=\<phi>0"

apply(simp add: \<phi>0_def pgassle_def)

apply(rule ext)

apply(auto)

done

consts pgassaddr :: "pgass \<Rightarrow> (addr set)"

defs pgassaddr_def: "pgassaddr \<phi> == {a. \<exists>n. a\<in>(\<phi> n)}"

consts wfpgass :: "heap \<Rightarrow> stack \<Rightarrow> pgraph

\<Rightarrow> pgass \<Rightarrow> bool"

("(_,_\<turnstile>_:_)")

defs wfpgass_def: "wfpgass h s G \<phi> ==

(\<forall>x. \<forall>n.

(x\<rightarrow>n)\<in>G\ <longrightarrow>

(\<exists>x'.

((s x) = x') &

(\<forall>a.(x'=Some $a) \<longrightarrow> a\<in>(\<phi> n))))

& (\<forall>f. \<forall>n. \<forall>n'.

(n\<rightarrow>f\<rightarrow>n')\<in>G \<longrightarrow>

{a. \<exists>a'. a'\<in>(\<phi> n)

& (\<exists>fs. ((h a')=Some fs) & ((fs f)=$a))}

\<subseteq> (\<phi> n'))"

consts minpgass :: "heap \<Rightarrow> stack \<Rightarrow> pgraph
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\<Rightarrow> pgass"

("(\<Phi> _ _ _)")

defs minpgass_def: "\<Phi> h s G == \<Sqinter> { \<phi>. wfpgass h s G \<phi> }"

(* sanity *)

lemma "wfpgass [100\<mapsto>(\<lambda>f. Null)(f:=$100)]

[vx\<mapsto>$100]

{vx\<rightarrow>1,1\<rightarrow>f\<rightarrow>1}

((\<lambda>n.{})(1:={100}))"

apply(simp add:wfpgass_def)

done

lemma "wfpgass [100\<mapsto>((\<lambda>f. Null)(ff:=$101))]

empty

{1\<rightarrow>ff\<rightarrow>2}

((\<lambda>n.{})(1:={100},2:={101}))"

apply(simp add:wfpgass_def)

done

consts actionlistaddr:: "(action list) \<Rightarrow> (addr set)"

defs actionlistaddr_def: "actionlistaddr A == {a. (Some a) mem A}"

(* sanity *)

lemma "actionlistaddr [Some a, None, Some b, Some b] = {a,b}"

apply(simp add:actionlistaddr_def)

apply(auto)

done

lemma noaction [simp]: "actionlistaddr (None#A) = actionlistaddr A"

apply(simp add: actionlistaddr_def)

done

lemma someaction [simp]: "actionlistaddr ((Some a)#A)

= {a} \<union> actionlistaddr A"

apply(simp add: actionlistaddr_def)

apply(auto)

done

lemma wfpgass_preserved_over_subset: "\<lbrakk> G'\<subseteq>G ;

wfpgass h s G \<phi> \<rbrakk>

\<Longrightarrow> wfpgass h s G' \<phi>"

apply(simp add: wfpgass_def)

apply(blast)
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done

(* wellformed assignments can be joined to form another assignment

ultimately this can help us find a minimal assignment *)

lemma wfpgass_inter: "\<lbrakk> \<forall> \<phi>\<in>\<phi>s.

wfpgass h s G \<phi> \<rbrakk>

\<Longrightarrow> wfpgass h s G (\<Sqinter> \<phi>s)"

apply(simp add: pgassInter_def subset_def wfpgass_def)

apply(safe)

apply(blast)

apply(blast)

done

(* clearly the smallest valid assignment is valid *)

lemma minpgass_sufficient: "wfpgass h s G (minpgass h s G)"

apply(simp add: minpgass_def)

apply(insert wfpgass_inter)

apply(blast)

done

lemma wfpgass_always_le: "wfpgass h s G \<phi>

\<Longrightarrow> (\<exists>\<phi>'.

minpgass h s G = \<phi>' \<and>

\<phi>'\<sqsubseteq>\<phi>)"

apply(simp add: minpgass_def pgassInter_def pgassle_def)

apply(blast)

done

lemma wfpgass_shrink: "wfpgass h s G \<phi>

\<Longrightarrow> (minpgass h s G) \<sqsubseteq> \<phi>"

apply(drule wfpgass_always_le)

apply(blast)

done

lemma source_aux: "\<lbrakk> \<forall>x. x \<rightarrow> n \<in> G

\<longrightarrow> s x \<noteq> Some $a;

\<forall>n' f. (n'\<rightarrow>f\<rightarrow>n) \<in> G

\<longrightarrow>

(\<forall>a' fs. h a' = Some fs

\<longrightarrow>

fs f \<noteq> $a) \<rbrakk>

\<Longrightarrow> \<exists>\<phi>. a\<notin>\<phi> n \<and>

wfpgass h s G \<phi>"

apply (rule_tac ?x="(\<lambda>n . UNIV)(n:=UNIV-{a})" in exI)

apply (simp add: wfpgass_def)

apply(auto)

done

lemma source: "a\<in>(minpgass h s G) n

\<Longrightarrow> (\<exists>x. x\<rightarrow>n\<in>G \<and>

(s x = Some $a))

\<or>
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(\<exists>n' f a' fs.

(n'\<rightarrow>f\<rightarrow>n)\<in>G

\<and> (h a'=Some fs) \<and> (fs f = $a))"

apply (subgoal_tac "\<forall>h s G n a. a\<in>(minpgass h s G) n

\<longrightarrow>

(\<exists>x.

x\<rightarrow>n\<in>G \<and>

(s x = Some $a))

\<or>

(\<exists>n' f a' fs.

(n'\<rightarrow>f\<rightarrow>n)

\<in>G \<and>

(h a'=Some fs) \<and>

(fs f = $a))")

apply(blast)

apply(thin_tac "a \<in> minpgass h s G n")

apply(simp add: minpgass_def pgassInter_def)

apply(rule classical)

apply(simp)

apply(clarify)

apply(simp)

apply(drule_tac ?h="h" and ?s="s" and ?G="G" in source_aux)

apply(auto)

done

lemma thinactionlistaddr: " actionlistaddr L - {a} \<subseteq> S

\<Longrightarrow>

actionlistaddr (

map ((\<lambda>x. x)(Some a := None)) L)

\<subseteq> S"

apply(subgoal_tac "actionlistaddr (map ((\<lambda>x. x)(Some a := None)) L)

= actionlistaddr L - {a}")

apply(simp)

apply(simp add: actionlistaddr_def)

apply(thin_tac "{a. Some a mem L} - {a} \<subseteq> S")

apply(induct_tac L)

apply(simp)

apply(simp,blast)

done

theorem soundness: "(accesses (P,h,s,n,A)) \<and> (wfanalysis P X)

\<longrightarrow> (actionlistaddr A

\<subseteq>

pgassaddr (minpgass h s (X n)))"

apply(induct_tac P h s n A rule: accesses.induct)

apply(simp add: actionlistaddr_def)

apply(rule impI|rule allI|erule conjE|rule conjI)+

apply(case_tac "P n")

apply(simp)

apply(rename_tac st)

apply(case_tac st)
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(*** x=y ***)

apply(rename_tac x y n')

apply(simp)

apply(fold fun_upd_def)

apply(case_tac "s y")

apply(simp)

apply(rename_tac v)

apply(simp)

apply(erule conjE)

apply(simp add: wfanalysis_def)

apply(drule_tac ?x="n" in spec)

apply(simp)

apply(simp only:minpgass_def pgassInter_def)

apply(erule subset_trans)

apply(simp only:subset_def Ball_def pgassaddr_def wfpgass_def Inter_def)

apply(clarify)

apply(rename_tac a n'')

apply(rule_tac ?x="n''" in exI)

apply(simp)

apply(clarify)

apply(rename_tac z \<phi>)

apply(drule_tac ?x="\<phi> n''" in spec)

apply(erule impE)

apply(rule_tac ?x="\<phi>" in exI)

apply(simp add: wfpgass_def)

apply(rule impI|rule allI|rule conjI|erule conjE)+

apply(rename_tac z n'' a)

apply(case_tac "y=x")

apply(simp)

apply(case_tac "z=x")

apply(simp)

apply(drule_tac ?x="z" in spec)

apply(drule_tac ?x="n''" in spec)

apply(simp)

apply(drule_tac ?x="z" in spec)

apply(drule_tac ?x="n''" in spec)

apply(simp)

apply(assumption)

(*** case x=y.f ***)

apply(simp)

apply(fold fun_upd_def)

apply(rename_tac x y f n')

apply(case_tac "s y")

apply(simp)

apply(simp)

apply(rename_tac yv)

apply(case_tac yv)

apply(simp)
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apply(rename_tac targ)

apply(simp)

apply(case_tac "h targ")

apply(simp)

apply(rename_tac fs)

apply(simp)

apply(erule conjE)

apply(subgoal_tac "actionlistaddr A \<subseteq> pgassaddr (minpgass h s (X n))")

apply(rule conjI)

apply(thin_tac "accesses (P, h, s(x \<mapsto> fs f), n', A)")

apply(thin_tac "actionlistaddr A \<subseteq> pgassaddr \<Phi> h s (X n)")

apply(thin_tac "act = Some targ")

apply(thin_tac "actionlistaddr A

\<subseteq> pgassaddr (\<Phi> h s(x \<mapsto> fs f) (X n'))")

apply(thin_tac "yv = $targ")

apply(thin_tac "st = [x=y.. f,n']")

apply(thin_tac "h targ = Some fs")

apply(simp add: minpgass_def pgassInter_def wfpgass_def

wfanalysis_def pgassaddr_def)

apply(drule_tac ?x="n" in spec)

apply(rule_tac ?x="n" in exI)

apply(simp)

apply(rule allI)

apply(rename_tac addrs)

apply(rule impI)

apply(erule exE)

apply(erule conjE)+

apply(drule_tac ?x="y" in spec)

apply(drule_tac ?x="n" in spec)

apply(erule conjE)+

apply(drule mp)

apply(simp)

apply(simp)

apply(simp)

apply(erule subset_trans)

apply(thin_tac "st = [x=y.. f,n']")

apply(thin_tac "yv = $targ")

apply(thin_tac "act = Some targ")

apply(thin_tac "accesses (P, h, s(x \<mapsto> fs f), n', A)")

apply(simp add: minpgass_def pgassInter_def subset_def pgassaddr_def)

apply(rule allI)

apply(rename_tac a)

apply(rule impI)

apply(erule exE)

apply(rename_tac n'')

apply(rule_tac ?x="n''" in exI)

apply(rule allI)

apply(rename_tac addrs)

apply(rule impI)

apply(drule_tac ?x="addrs" in spec)

apply(erule exE)

apply(rename_tac \<phi>)

apply(drule mp)

apply(rule_tac ?x="\<phi>" in exI)

apply(erule conjE)
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apply(erule conjI)

apply(simp add: wfanalysis_def wfpgass_def)

apply(drule_tac ?x="n" in spec,simp)

apply(clarify)

apply(rename_tac z)

apply(rule conjI)

apply(rule impI)

apply(rule allI)

apply(rename_tac n'')

apply(clarify)

apply(drule_tac ?x="f" in spec)

apply(drule_tac ?x="n" in spec)

apply(drule_tac ?x="n''" in spec)

apply(erule conjE)

apply(drule mp)

back

apply(simp)

apply(simp add: subset_def)

apply(drule_tac ?x="a" in spec)

apply(drule mp)

apply(rule_tac ?x="targ" in exI)

apply(rule conjI)

apply(blast)

apply(blast)

apply(assumption)

apply(blast)

apply(assumption)

(*** case x.f=y ***)

apply(rename_tac x f y n')

apply(simp)

apply(fold fun_upd_def)

apply(thin_tac "st = [x..f=y,n']")

apply(case_tac "s y")

apply(simp)

apply(rename_tac yv)

apply(case_tac "s x")

apply(simp)

apply(rename_tac xv)

apply(simp)

apply(case_tac xv)

apply(simp)

apply(rename_tac a)

apply(case_tac "h a")

apply(simp)

apply(rename_tac fs)

apply(simp)

apply(thin_tac "xv = $a")

apply(erule conjE)

apply(subgoal_tac "actionlistaddr A

\<subseteq> pgassaddr (minpgass h s (X n)) ")
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apply(simp)

apply(simp add: pgassaddr_def minpgass_def pgassInter_def)

apply(rule_tac ?x="n" in exI)

apply(rule allI)

apply(rename_tac addrs)

apply(rule impI)

apply(erule exE)

apply(thin_tac "actionlistaddr A

\<subseteq> {aa.

\<exists>n.

\<forall>x.

(\<exists>\<phi>. x = \<phi> n \<and>

wfpgass (h(a \<mapsto>

fs(f := yv)))

s (X n') \<phi>)

\<longrightarrow> aa \<in> x}")

apply(thin_tac "s y = Some yv")

apply(thin_tac "h a = Some fs")

apply(thin_tac "act = Some a")

apply(thin_tac "accesses (P,(h(a \<mapsto> fs(f := yv))),s,n',A)")

apply(thin_tac "actionlistaddr A \<subseteq>

{a. \<exists>na. \<forall>x.

(\<exists>\<phi>. x = \<phi> na \<and>

wfpgass h s (X n) \<phi>)

\<longrightarrow> a \<in> x}")

apply(erule conjE)

apply(simp add: wfpgass_def wfanalysis_def)

apply(drule_tac ?x="n" in spec)

apply(simp)

apply(blast)

apply(thin_tac "act = Some a")

apply(thin_tac "accesses(P,(h(a \<mapsto> fs(f := yv))),s,n',A)")

apply(erule subset_trans)

apply(simp add:subset_def)

apply(clarify)

apply(rename_tac a')

apply(simp add: pgassaddr_def)

apply(clarify)

apply(rename_tac n'')

apply(rule_tac ?x="n''" in exI)

apply(simp add: minpgass_def pgassInter_def)

apply(clarify)

apply(rename_tac addrs \<phi>)

apply(simp)

apply(drule_tac ?x="(minpgass h s (X n)) n''" in spec)

apply(drule mp)

apply(rule_tac ?x="minpgass h s (X n)" in exI)

apply(simp)

prefer 2

apply(drule wfpgass_shrink)

apply(unfold pgassle_def)

apply(blast)

apply(thin_tac "h,s\<turnstile>X n:\<phi>")

apply(subgoal_tac "h,s\<turnstile>X n:(minpgass h s (X n))")

prefer 2
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apply(rule minpgass_sufficient)

apply(simp only: wfanalysis_def wfpgraph_def)

apply(drule_tac ?x="n" in spec)

apply(simp|clarify)+

apply(thin_tac "X n = insert (x \<rightarrow> n)

(X n' -

{e. \<exists>n'a.

(\<exists>n''. e = (n'a\<rightarrow>f\<rightarrow>n'')) \<and>

x \<rightarrow> n'a \<in> X n' \<and>

(\<forall>z. z = x \<or>

z \<rightarrow> n'a \<notin> X n') \<and>

(\<forall>n''' f.

(n'''\<rightarrow>f\<rightarrow>n'a) \<notin> X n')

} \<union> {y \<rightarrow> n'a | n'a.

\<exists>n''.

(n''\<rightarrow>f\<rightarrow>n'a) \<in> X n'})")

apply(thin_tac "P n = Some [x..f=y,n']")

apply(simp (no_asm_simp) only: wfpgass_def)

apply(clarify|simp)+

apply(intro conjI impI allI)

apply(simp only: wfpgass_def)

apply(clarify|simp)+

apply(rename_tac n1 n2 a2 a1)

apply(case_tac "a1 = a")

apply(simp)

apply(clarify)

apply(simp (no_asm) add: minpgass_def pgassInter_def)

apply(simp (no_asm) only: wfpgass_def)

apply(clarify)

apply(simp (no_asm_simp))

apply(drule_tac ?x="y" in spec)

apply(drule_tac ?x="n2" in spec)

apply(drule mp)

apply(blast)

apply(blast)

apply(simp|clarify)+

apply(rename_tac "fs1")

apply(frule source)

apply(simp|clarify)+

apply(erule disjE)

apply(simp|clarify)+

apply(rename_tac z)

apply(erule disjE)

apply(simp|clarify)+

apply(erule disjE)

apply(simp only: wfpgass_def)

apply(simp|clarify)+

apply(drule_tac ?x="f" in spec)

apply(drule_tac ?x="n1" in spec)

apply(drule_tac ?x="n2" in spec)

apply(simp|clarify)+

apply(drule mp)

apply(subgoal_tac "z\<noteq>x")
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apply(blast)

apply(simp|clarify)+

apply(drule_tac ?x="z" in spec)

apply(drule_tac ?x="n1" in spec)

apply(simp|clarify)+

apply(blast)

apply(simp|clarify)+

apply(rename_tac n3)

apply(simp only: wfpgass_def)

apply(simp|clarify)+

apply(drule_tac ?x="f" in spec)

apply(drule_tac ?x="n1" in spec)

apply(drule_tac ?x="n2" in spec)

apply(simp|clarify)+

apply(drule mp)

apply(blast)

apply(blast)

apply(simp|clarify)+

apply(rename_tac n3 f3 a9 fs9)

apply(simp only: wfpgass_def)

apply(erule conjE)

apply(drule_tac ?x="f" in spec)

apply(drule_tac ?x="n1" in spec)

apply(drule_tac ?x="n2" in spec)

apply(drule mp)

back

apply(blast)

apply(simp only: subset_def)

apply(simp only: Ball_def)

apply(drule_tac ?x="a2" in spec)

apply(blast)

apply(rename_tac f0 n1 n2)

apply(clarify|simp)+

apply(rename_tac a2 a1)

apply(subgoal_tac "a1 \<in> minpgass h s

(insert (x \<rightarrow> n)

(X n' -

{e. \<exists>n'a.

(\<exists>n''. e = (n'a\<rightarrow>f\<rightarrow>n''))

\<and>

x \<rightarrow> n'a \<in> X n'

\<and>

(\<forall>z. z = x \<or>

z \<rightarrow> n'a

\<notin> X n')

\<and>

(\<forall>n''' f.

(n'''\<rightarrow>f\<rightarrow>n'a)

\<notin> X n')

} \<union> { y \<rightarrow> n'a |n'a.

\<exists>n''. (n''\<rightarrow>f\<rightarrow>n'a)

\<in> X n'

}))
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n1 \<and>

(\<exists>fs. (h a1 = Some fs) \<and> (fs f0 = $a2))")

apply(simp|clarify)+

apply(rename_tac fs1)

apply(simp only: wfpgass_def)

apply(simp|clarify)+

apply(drule_tac ?x="f0" in spec)

apply(drule_tac ?x="n1" in spec)

apply(drule_tac ?x="n2" in spec)

apply(blast)

apply(blast)

(*** new ***)

apply(rename_tac x n')

apply(simp)

apply(fold fun_upd_def)

apply(erule conjE)

apply(erule exE)

apply(erule conjE)

apply(erule exE)

apply(rename_tac "A'")

apply(drule_tac ?x="a" in spec)

apply(drule_tac ?x="A'" in spec)

apply(simp)

apply(thin_tac "st = [x=new,n']")

apply(thin_tac "act = None")

apply(thin_tac "h a = None")

apply(erule conjE)

apply(thin_tac "A = map ((\<lambda>x. x)(Some a := None)) A'")

apply(thin_tac "accesses (P, h(a \<mapsto> \<lambda>f. Null),

s(x \<mapsto> $a), n', A')")

apply(simp add: wfanalysis_def)

apply(drule_tac ?x="n" in spec)

apply(simp)

apply(thin_tac "P n = Some [x=new,n']")

apply(thin_tac "X n = X n' - {x \<rightarrow> n'a |

n'a. x \<rightarrow> n'a \<in> X n'}")

apply(simp)

apply(rule thinactionlistaddr)

apply(simp add: minpgass_def actionlistaddr_def pgassInter_def pgassaddr_def)

apply(simp add: subset_def Ball_def)

apply(intro allI impI)

apply(rename_tac a')

apply(erule conjE)

apply(drule_tac ?x="a'" in spec)

apply(simp)

apply(thin_tac "Some a' mem A'")

apply(erule exE)

apply(rename_tac "n")

apply(rule_tac ?x="n" in exI)
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apply(rule allI)

apply(rename_tac "addrs")

apply(rule impI)

apply(drule_tac ?x="addrs \<union> {a}" in spec)

apply(drule mp)

apply(erule exE)

apply(erule conjE)

apply(thin_tac "a' \<noteq> a")

apply(simp)

apply(rule_tac ?x="\<lambda>n.{a} \<union> \<phi> n" in exI)

apply(simp)

apply(clarify)

apply(simp)

apply(unfold wfpgass_def)

apply(rule conjI)

apply(clarify)

apply(simp)

apply(blast)

apply(simp)

apply(blast)

apply(simp)

(*** if ***)

apply(rename_tac n' n'')

apply(simp)

apply(erule conjE)

apply(erule disjE)

apply(thin_tac "accesses (P, h, s, n'', A) \<longrightarrow>

actionlistaddr A \<subseteq> pgassaddr \<Phi> h s (X n'')")

apply(simp)

apply(simp add: wfanalysis_def pgassaddr_def)

apply(drule_tac ?x="n" in spec)

apply(simp)

apply(subgoal_tac "{a. \<exists>n. a \<in> (\<Phi> h s (X n')) n}

\<subseteq> {a. \<exists>n. a \<in>

(\<Phi> h s ((X n') \<union> (X n''))) n}")

apply(blast)

apply(thin_tac "accesses (P, h, s, n', A)")

apply(thin_tac "act = None")

apply(thin_tac "X n = X n' \<union> X n''")

apply(thin_tac "P n = Some [?,n',n'']")

apply(thin_tac "actionlistaddr A \<subseteq>

{a. \<exists>n. a \<in> (\<Phi> h s (X n')) n}")

apply(thin_tac "st = [?,n',n'']")

apply(simp add: minpgass_def subset_def pgassInter_def)

apply(clarify)

apply(rule_tac ?x="n" in exI)

apply(clarify)

apply(drule_tac ?x="\<phi> n" in spec)

apply(drule mp)

apply(simp add: subset_def Ball_def)

apply(rule_tac ?x="\<phi>" in exI)
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apply(insert wfpgass_preserved_over_subset)

apply(blast)

apply(blast)

apply(thin_tac "accesses (P, h, s, n', A) \<longrightarrow>

actionlistaddr A \<subseteq> pgassaddr \<Phi> h s (X n')")

apply(simp)

apply(simp add: wfanalysis_def pgassaddr_def)

apply(drule_tac ?x="n" in spec)

apply(simp)

apply(subgoal_tac "{a. \<exists>n. a \<in>(\<Phi> h s (X n'')) n}

\<subseteq> {a. \<exists>n. a \<in>

(\<Phi> h s ((X n') \<union> (X n''))) n}")

apply(blast)

apply(thin_tac "accesses (P, h, s, n'', A)")

apply(thin_tac "act = None")

apply(thin_tac "X n = X n' \<union> X n''")

apply(thin_tac "P n = Some [?,n',n'']")

apply(thin_tac "actionlistaddr A

\<subseteq> {a. \<exists>n. a \<in> (\<Phi> h s (X n'')) n}")

apply(thin_tac "st = [?,n',n'']")

apply(simp add: minpgass_def subset_def pgassInter_def)

apply(clarify)

apply(rule_tac ?x="n" in exI)

apply(clarify)

apply(drule_tac ?x="\<phi> n" in spec)

apply(drule mp)

apply(simp add: subset_def Ball_def)

apply(rule_tac ?x="\<phi>" in exI)

apply(insert wfpgass_preserved_over_subset)

apply(blast)

apply(blast)

done

end
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