
Imperial College of Science,
Technology and Medicine
(University of London)

Department of computing

Comparing the Expressive Power

of Monitors and Chords

by

Dave Cunningham

Submitted in partial fulfilment
of the requirements for the MSc

Degree in Advanced Computing of the
University of London and for the
Diploma of Imperial College of

Science, Technology and Medicine.

September 2005

Abstract

The report presents a formal argument for the relative expressive power of monitors and
chords, when used for synchronisation in concurrent, imperative, object-oriented languages.
Our formalism of expressive power is based on the work of Matthias Felleisen[5]. We review
and then formalise monitors and chords. We use these formalisations to formally prove
properties as in [5].

First we show that asynchronous chords can be removed from a chorded object oriented
language and replaced with a spawn construct without affecting the expressiveness of the
language. This means the programmer can use spawn instead of asynchronous chords,
for thread creation, without affecting the structure of the program. We use this result to
compare languages with just synchronous chords, to Java-like languages with monitors.

We show that chords and monitors have equal expressive power. We conclude from
this that the introduction of chords into real programming languages are unlikely to rev-
olutionise programming practice.

Keywords:

• Programming language

• Object oriented

• Concurrency, Concurrent, Multithreaded

• Synchronisation

• Expressiveness, Expressibility

• Chords, Message passing

• Lock, Monitor, Mutex

• Operational semantics

i

Acknowledgements

I must sincerely thank my supervisor Dr Sophia Drossopoulou for her enthusiasm and
guidance during this course. Without the hours she spent advising me in person, as well
as by email, and without her detailed comments on all the writing that she encouraged
me to do, I fear this project would not have been possible.

I am also very grateful for the support Dr Nobuko Yoshida gave, during a few weeks
while Sophia was away. Her enthusiasm and expertise on concurrency theory was much
appreciated.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of report . 2

2 Background 3
2.1 Expressiveness . 3
2.2 Synchronisation via monitors . 4

2.2.1 Mutual Exclusion . 5
2.2.2 Specifying a critical section with lock() and unlock() 6
2.2.3 Specifying a critical section with synchronized 7
2.2.4 Re-entrant mutexes . 9
2.2.5 The behaviour of condition variables 11

2.3 Synchronisation via chords . 13
2.3.1 Behaviour . 14
2.3.2 Example . 14

2.4 Spawning threads . 15

3 Approach 17
3.1 Extensions of [5] . 20

3.1.1 When languages are unrelated by (⊂) 20
3.1.2 When languages are not homogeneous 20
3.1.3 When code is duplicated . 21
3.1.4 Exceptions to structure preservation 22

4 Definition of chorded languages LA and LS 23
4.1 Comparison with the formalisations in [4] 23
4.2 Guided tour of LA and LS . 25

4.2.1 Programs . 25
4.2.2 Execution . 26
4.2.3 Well-formed programs . 28

5 LA is at most as expressive as LS 32
5.1 Definition of the translation ϕAS . 32

5.1.1 Examples . 32
5.1.2 Translation . 35
5.1.3 Properties of the translation . 36

iii

CONTENTS

5.2 Preservation of structure (proof) . 37
5.3 Preservation of well-formedness (proof) . 38

5.4 Preservation of behaviour (proof) . 40

5.4.1 Motivation . 40

5.4.2 Example . 41
5.4.3 Early decision-making . 41

5.4.4 Bisimilarity . 43

5.4.5 A Simpler equivalence relation . 43
5.4.6 Proof of forwards equivalence . 46

6 LS is at most as expressive as LA 49
6.1 Definition of the translation ϕSA . 49

6.1.1 Example . 49

6.1.2 Translation . 50

6.1.3 Properties of the translation . 52
6.2 Preservation of structure (proof) . 52

6.3 Preservation of well-formedness (proof) . 53

7 LJ is at most as expressive as LS+ 57

7.1 Definition of LJ . 57

7.1.1 Comparison with the formalisation in [1] 58
7.1.2 Comparison with real languages such as Java 58

7.1.3 Guided tour of LJ . 59

7.1.4 Invariants of execution in LJ programs 65

7.2 Definition of LS+ . 65
7.2.1 Guided tour of LS+ . 65

7.3 Definition of the translation ϕJS+ . 70

7.3.1 Example . 70
7.3.2 Translation . 72

7.3.3 Properties of the translation . 72

7.4 Preservation of structure (proof) . 74

7.5 Preservation of well-formedness (proof) . 75

8 LS is at most as expressive as LJ∗ 79

8.1 Definition of LJ∗ . 79
8.1.1 Method arguments . 79

8.1.2 Features in LJ∗ and not in real languages 80

8.1.3 Implementing the queue operations in Java 81
8.1.4 Guided tour of LJ∗ . 83

8.2 Definition of the translation ϕSJ∗ . 84

8.2.1 Example . 84

8.2.2 Translation . 89
8.2.3 Properties of the translation . 89

8.3 Preservation of structure (proof) . 91

8.4 Preservation of well-formedness (proof) . 91

iv

CONTENTS

9 Conclusion 95
9.1 Summary of the technical results of this project 95
9.2 What does this mean for the programmer? 96

9.2.1 Conciseness – an application suited to chords 96
9.2.2 Conciseness – an application suited to monitors 98

9.3 Do chords discourage mistakes? An analogy with garbage collection. 102
9.4 Where did chords make the encodings difficult? 103

10 Evaluation and further work 104
10.1 Evaluation . 104

10.1.1 Criticisms of formal work . 104
10.1.2 Accuracy of formalisms . 104

10.2 Further work . 105

v

Chapter 1

Introduction

1.1 Motivation

It is widely believed that in the near future, many more concurrent programs will need
to be written[11]. As with any other programs, they need to be written well, and it is an
accepted fact in the field of Software Engineering that good program design can encourage
readability (allowing easier maintenance) and discourage bugs.

We know that some languages allow program designs that other languages do not, we
say a language is more expressive than another. This was elegantly formalised in [5]. We
attempt to adapt this technique to reason about the expressiveness of two approaches
towards concurrent programming language design. If a language cannot express a partic-
ularly good class of program designs, then that language would not be a good choice for
programmers.

Concurrent programs have a fundamentally different model of execution to sequential
programs, and in particular there is a requirement for different threads of execution to
affect each others’ progress, i.e. they occasionally need to synchronise. In this report
we compare two fundamentally different approaches towards providing this utility to the
programmer:

• We can synchronise two threads with a system of monitors. This approach is older
than chords, and was originally documented in [8]. It has been conventionally em-
ployed by operating systems and real concurrent languages to date, e.g. POSIX[9]
and Java[7]. Languages using monitors typically have two complementary features:
The mutual exclusion primitives are intended for preventing any thread from exe-
cuting some code if some other thread is executing that code. Condition variables
allow one thread to suspend its execution until another thread lets it continue.

• We can synchronise two threads with a notion of message passing called chords. Its
obvious application is for defining communication between threads, i.e. the transfer
of run-time data from one thread to another. Additionally, because the receiving
thread cannot proceed without this information, it is effectively being stalled, and
thus the execution of one thread is affecting the progress of another. There has been
recent research[2] towards the use of chords in the practical programming language
C].

1

Chapter 1. Introduction

In this report we show that these two approaches are equally expressive. There are no
program designs that are only expressible with one or the other. We conclude that chords
are unlikely to revolutionise concurrent software development in the same way that adding
recursion and exceptions to languages has done. Neither does exclusively using chords
have the same benefits as exclusively using structured control flow or garbage collection.

Chords may, however, allow certain complex concurrent programs to be written more
concisely, and thus their impact may be similar to the impact of object oriented features
into a language (not to be confused with using a language like C to write an object-
oriented program using function pointers to implement late binding and so on). At this
stage, is hard to say of what magnitude the impact of chords would be, but we hope to
have determined what kind of impact it would be.

1.2 Structure of report

The remaining chapters of this report are as follows: Chapter 2 summarises the context in
which this work exists. This includes the external ideas and adaptions thereof that were
used in this report (such as the notion of expressiveness from [5]). We also describe in
detail the synchronisation constructs that this report compares, i.e. monitors and chords.
Chapter 3 explains the way in which we tackle the problem of measuring expressiveness in
this report, with reference to the content of the previous chapter.

The main body of the report, chapters 4, 5, 6, 7, and 8 contain the definitions, theories,
and proofs that substantiate the conclusion. Although this work compares only two differ-
ent approaches to synchronisation, there are many intermediate languages and a path is
defined through these languages to connect the two paradigms. Chapter 3 contains more
detail on the structure of the body of the report.

Chapter 9 summarises and consolidates the results of the body of the report and builds
from this a conclusion. Chapter 10 criticises the method and techniques used in the report,
and discusses the value of the results. There are also some suggestions for further work.

2

Chapter 2

Background

2.1 Expressiveness

Much of the work in this report uses the formalisation of programming language expres-
siveness from [5]. In fact, [5] defines two concepts of language expressiveness, we use the
stronger notion of “macro-expressiveness” throughout. The approach in [5] was to define
translations between languages that preserve three properties. The first two properties
were program validity (this was called programness) and program behaviour (this was
simplified to termination behaviour).

A third property was needed because the languages considered were Turing-complete,
there was always an equivalently behaving and valid program in the target language.
Sometimes, however, the translation had to massively change the structure of the program
it was translating, in order to make it “fit” into the target language, and this was considered
unacceptable. To reject translations that changed the general structure of the program
they were translating, it was required that the third property, “structure-preservation”,
was preserved over the translations. The existence of such a translation implied that source
language was at most as expressive as the target language.

Actually, the method in [5] was to demonstrate that certain constructs were “elim-
inable”. Constructs were removed from a language and it was shown (through definition
of an appropriate translation) that the restricted language was at most as “expressive” as
the original language. This means that no program designs were lost as a consequence of
restricting the language.

The translation had to preserve program validity and behaviour, but more importantly,
program structure. It was the definition of this property of structure-preservation where
the particular contribution of [5] lay. A translation ϕ : L1 → L2 where L2 ⊂ L1 was
structure-preserving if and only if:

• It was homomorphic over program constructs that were not being eliminated, i.e. the
constructs in L2. This includes code in which constructs that are to be eliminated
are nested, and also code that is nested inside such constructs. We must visualise the
eliminated constructs as a set of specific points in the syntax tree, and the translation
must only affect those points, it must preserve the structure (or shape) of the rest of
the tree.

3

Chapter 2. Background

• Its effect on eliminated constructs can be summarised as follows: If c is an eliminated
construct(i.e. c ∈ L1 but c /∈ L2) with an arity of n, and c(e1 . . . en) is a piece
of program syntax, then ϕ(c(e1 . . . en)) can be described as a “macro” encoding of
ϕ(e1) . . . ϕ(en). This means that the result of encoding c(e1 . . . en) is a piece of syntax
in which ϕ(e1) . . . ϕ(en) are contained, and whose structure is otherwise independent
of ϕ(e1) . . . ϕ(en). Crucially, the e1 . . . en must remain intact, aside from the recursion
of the translation.

For example, it can be shown that the Java’s for construct can be eliminated from Java
using a simple macro translation that uses while. However, the language feature of excep-
tions cannot be represented in terms of method return values, since the translation would
have to change the code that invokes the method, the code that invoked that method, and
so on, all the way back to the place where the exception is caught. This would clearly
not be structure-preserving since it requires the modification of many areas of the syntax
tree that are not places where the exception syntax is used. We can conclude that Java
without for is as expressive as Java with for, however a Java without exceptions is less
expressive.

2.2 Synchronisation via monitors

Monitors were described in [8], and despite there being other mechanisms available for ex-
pressing synchronisation (such as various forms of message passing in functional languages,
and the Ada approach), they are by far the most common used in practical programming
languages. We could speculate that the reason for this is their very fundamental nature
means they are very versatile, and also easy (and efficient) to implement.

As mentioned in section 1.1, there are two complementary mechanisms in any monitor
implementation, mutual exclusion (which ensures no two threads are executing a “critical
section” of programming code) and condition variables (which allow a thread to tell an-
other thread to progress). Different programming languages use different terminology, and
the exact syntax and “presentation” to the programmer has changed, but the underlying
concept is the same.

• Programmers often casually speak of “locks”, when referring to a wide variety of
mechanisms such as placing files on the disk to let other programs know that they
are running, and internal file-system mechanisms for preventing multiple programs
from accessing the same file, as well as the monitors found in programming languages.

• The POSIX standard[9] talks of mutexes, which is an abbreviation of “mutual exclu-
sion”, and condition variables. Mutual exclusion requires us to mark critical sections
in the code, and in POSIX we do this by calling a specific function at the beginning
and end of a critical section. Condition variables are implemented with the functions
pthread_cond_wait(), pthread_cond_signal() and pthread_cond_broadcast().

• Older versions of Java[7] have a synchronized construct that encloses the critical
section, and thus is a higher-level interface to mutual exclusion. They also have the
object methods wait(), notify(), and notifyAll(), which are an implementation

4

2.2. Synchronisation via monitors

of condition variables. Newer versions (since 1.5) also have POSIX-style mutexes
where critical sections can be delimited with specific function calls.

We will in future refer this to synchronisation approach (the two complementary mecha-
nisms) as monitors. Mechanisms for implementing mutual exclusion will be referred to as
mutexes. The mechanism which is called “condition variables” in [8] and POSIX[9], we
will refer to by same name, but when we refer to the individual methods we will use the
Java style, i.e. wait(), notify(), and notifyAll(), because Java has become a more
widely used language in academia.

Studying monitors gives us insight into many more languages, since the concurrency
features found in many other programming languages and operating system libraries are
very similar to monitors. Most languages simply provide a compatibility interface to
the underlying operating system’s libraries, of which many use the POSIX approach as
described above.

We now discuss the precise behaviour of mutual exclusion, and look at two solutions
to the problem of specifying the critical section in a program. Then we look at re-entrant
mutexes which are a higher-level mutex implementation that provide a more intuitive
behaviour. We then consider the precise behaviour of condition variables and the role they
play in synchronisation. Finally we look at how threads are spawned, since in order to
have a concurrent program, we need to spawn threads.

2.2.1 Mutual Exclusion

Motivation

Mutual exclusion is the effect of preventing two threads from executing a particular block
of code concurrently. This block of code is often called a critical section and will typically
cause some inconsistent intermediate state in shared memory, that must not be exposed
to other threads. We can define inconsistency of shared memory by saying that some
invariant is broken.

Such intermediate states are a natural consequence of composing a sequence of primitive
commands to define an operation on a data-structure. Before and after the sequence of
operations, the invariant holds, but it must be broken during the operation.

Without concurrency there is no problem since one can abstract such a sequence of
commands in a function or method call. The calling function does not see any intermediate
state of the operation, it only sees the state before and after the function call, where the
invariant holds. Because of this, operations on data-structures often assume the invariant
holds at the start and end of the sequence of commands.

When a thread is part-way through the execution of an operation on a data-structure,
and another thread begins an operation on the same data-structure, it is not valid to
assume that the invariant holds. This causes bugs called “race conditions” that are hard
to locate because their occurrence depends on the mutual state of two threads which is
non-deterministic.

Using mutual exclusion, however, we can ensure that one operation has finished before
another begins, thus we can ensure the invariant holds. Thus we hide the intermediate
states caused by other threads interacting with the data-structure, in the same way that
functions encapsulated the intermediate state in a non-concurrent environment.

5

Chapter 2. Background

Mutual exclusion is achieved by preventing the interleaving of one thread with another,
while they are executing related critical sections. If aaaa is the sequence of four operations
that implements some operation on a data-structure, and bbbb is the same sequence on the
same data, executed by another thread, mutual exclusion permits only the interleavings
aaaabbbb or bbbbaaaa. The other sixty eight interleavings are not permitted. We say that
the critical section is atomic, since no thread can observe any intermediate states which
would divide the critical section into two parts.

Examples of use

As a contrived example, we consider the shared memory data-structure of a pair of integers
(m, n), and the operation of assigning the same value to them both. If the following code
was executed concurrently, by two threads, there would be many more behaviours that we
would intuitively expect, particularly, the invariant that m = n would not be maintained:

local x := random();

m := x;

n := x;

If one thread binds x to 4, and the other thread binds x to 5, then the first thread executes
m := 4, then the other thread executes m := 5 and then n := 5, but then the first thread
continues and executes n := 4, then the resultant state is m = 5 but n = 4. To prevent
this, we specify that the code m := x ; n := x is a critical section. The approach for
doing this varies from language to language, we use the POSIX approach in the following
example:

local x := random();

lock()

m := x;

n := x;

unlock()

The effect of this change to the code on the concurrent execution, is to delay the execution
of m := 5 until after n := 4. If the second thread gets the lock first, the execution of
m := 4 will be delayed until after n := 5 has finished executing. Either way, the possible
results obey the invariant that m = n. The state where a thread has assigned to m but not
to n is not “visible” to any other thread.

Mutexes are intended to hide the intermediate state of computations on a shared data-
structure, by synchronising different threads such that they are not executing the critical
sections associated with that data-structure concurrently. Typically we enclose all code
whose correctness depends on the consistency of some shared data-structure, whether it
be reading or writing, with the same mutex, so only one thread can interact with the
data-structure at a time.

2.2.2 Specifying a critical section with lock() and unlock()

We can specify a critical section by calling a function lock() just before the start of the
critical section, and unlock() immediately after the end. This is the approach used by

6

2.2. Synchronisation via monitors

POSIX [9], because POSIX is an extension of the C language that is purely implemented
with libraries, so an extension of the C syntax was not possible. The implementation of
the functions lock() and unlock() implements the actual mutual exclusion.

When the call to lock() returns, we say that the thread owns the lock on that mutex,
or has locked that mutex. This state persists until unlock() is called by the same thread.

It is common to have many different mutexes being used concurrently, the mutex itself
being an opaque data-structure passed to the lock() and unlock() with an argument.
Thus, one can lock, or unlock a specific mutex. This means that the set of critical sections
is divided into groups that are each guarded by a mutex, and no two threads can be
concurrently executing a critical section of the same group.

If we used the same mutex for all the groups (effectively squashing the groups into one
big group), then no two threads could be in any critical section. Normally this preserves
the correctness of the program, but the unnecessary stalling of threads makes the execution
less efficient.

We call this effect on synchronisation the granularity of synchronisation, high granular-
ity means there is too much mutual exclusion, too little parallelism, and unnecessary low
efficiency. It is caused by having too few mutexes as described above, but also by marking
critical sections larger than they need to be.

Here is an example of delimiting a critical section with the function calls described
above:

lock(myMutex);

/* critical section (code that runs with the lock on myMutex) */

unlock(myMutex);

The behaviour of each function, when called by a thread, depends on the state of the other
threads in the system. Calls to lock() will stall unless no other thread has the lock on
the specified mutex. Calls to unlock() never stall, but will wake up a thread that was
waiting to enter, should one exist.

The stalling effect of lock() occurs if any thread has the lock, including the calling
thread, so for example, executing lock();lock() will block. The behaviour of calls to
unlock(), when the calling thread does not own the lock, is undefined, and valid programs
never do this.

In summary, calls to lock() attempt to obtain a specific lock. If that lock is already
taken, the call blocks until it is safe to obtain it. Calls to unlock() release the lock, and
always return immediately.

2.2.3 Specifying a critical section with synchronized

Initially, Java did not expose lock() and unlock() methods directly to the programmer.
It was decided that it was too easy for the programmer to forget to call unlock(), causing
deadlock, analogous to the way that if the programmer forgets to call free(), dynamically
allocated memory will be “leaked”. It was thought that it would be better if mutexes were
supported with a syntactic construct like if, where the critical section would be specified
as part of the syntax. Consider the following program:

7

Chapter 2. Background

lock(myMutex);

/* code that runs with the lock on myMutex */

unlock(myMutex);

Using Java’s synchronized keyword, this would be:

synchronized (myMutex) {

/* code that runs with the lock on myMutex */

}

This is called structured synchronisation, as opposed to un-structured, because the differ-
ence is analogous with the difference between using the lower level goto statement to define
“unstructured” control flow instead of the more syntax oriented if and while constructs.

We cannot directly use structured synchronisation to implement certain algorithms, for
example this solution to the readers/writers problem requires the locking and unlocking
of mutexes in unrelated parts of the syntax tree:

void read_lock() {

lock(counter);

if (num_reading==0)

lock(main);

num_reading++;

unlock(counter);

}

void read_unlock() {

lock(counter);

num_reading--;

if (num_reading==0)

unlock(main);

unlock(counter);

}

void write_lock() {

lock(main);

}

void write_unlock() {

unlock(main);

}

This solution is a higher-level mutex. Client code would use the “write lock” to delimit
critical sections that write to a shared data-structure, but use the “read lock” to delimit
critical sections that only need to read the state. This decreases the granularity because
multiple threads can read the shared data-structure concurrently without losing correct-
ness.

We need mutual exclusion to implement this mutex, since the higher-level mutex itself
is a shared state, operations on which are a sequence of primitive commands. We cannot

8

2.2. Synchronisation via monitors

use synchronized however, because that requires critical sections to be enclosed neatly by
the syntax, whereas in our above implementation the critical section begins in one function
call, continues in the calling function, and then is ended in a completely different function.

We can however implement lock() and unlock() functions, in the style of the POSIX
mutexes, using condition variables to implement the stalling and restarting of threads that
is required. This means that structured synchronisation does not restrict the expressiveness
of Java, but it may be inconvenient to have to implement the following code when it is
required.

class Mutex {

boolean engaged = false;

synchronized void lock() {

if (engaged) wait();

engaged = true;

}

synchronized void unlock() {

engaged = false;

notify();

}

}

Moreover, a mutex implemented in this fashion is disjoint from the mutex that is asso-
ciated with each object. We can either use synchronized for all critical sections, or use
synchronized to create a new mutex, and use the new mutex for all critical sections. The
syntax of synchronized, particularly the syntax sugaring that allows it to be embedded
in a method type signature, allows for some very elegant code so it is not a good thing to
be forced to use the above method for all the synchronisation in a class.

It was decided for later versions of Java to include unstructured synchronisation as well
as the synchronized keyword[3]. This was implemented with library functions in the style
of lock and unlock. It is still recommended for programmers to use synchronized where
they can, and only use the unstructured synchronisation features when they absolutely
have to. The library mutexes are completely disjoint from the mutexes embedded in
objects, so synchronized cannot be used with them.

2.2.4 Re-entrant mutexes

Re-entrant mutexes are a higher-level mutex, they can be implemented on top of non-re-
entrant mutexes. The interface is the same (we delimit critical sections as usual) but their
behaviour is more intuitive. The catch is that the logic that defines this behaviour is more
complex.

All Java’s concurrency primitives and libraries use re-entrant mutexes[7, 3]. POSIX
requires that implementations support both types of mutexes. Re-entrant mutexes are
called recursive mutexes in POSIX, the other kind of mutexes (described above) are called
fast.

According to its manual page[10], the default behaviour for the “Linuxthreads”1 mutex

1Linuxthreads is an implementation of the concurrency features of the POSIX standard.

9

Chapter 2. Background

implementation is fast as opposed to recursive. POSIX requires that both are supported,
but the default is undefined: [9]

“If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock
the mutex results in undefined behaviour.”

The difference between non-re-entrant and re-entrant mutexes is in the behaviour of calls
to lock(myMutex) by threads that already have the lock on myMutex. At run-time this can
be seen as “re-entering” the critical section, and in the source of a program, as defining
critical sections that are nested inside each other.

With a non-re-entrant mutex, the second call to lock() blocks. Since the only thing
that will wake it is a call to unlock(), by the thread that owns the thread (i.e. the blocked
thread), the thread will be remain blocked forever. Even worse than this, any other threads
that were waiting to get the lock will also be stalled forever. In fact, this is an example of
deadlock, and deadlock is never a useful behaviour.

With a re-entrant mutex, when a thread with the lock acquires the lock again, a counter
is incremented, and the call returns immediately. The thread has to unlock the mutex the
same number of times that it locked it, in order for it to be actually released so that other
threads can proceed. This is intuitive because we want the mutex to implement mutual
exclusion, that is we want there to be a maximum of one thread in the critical section, so
we only need exclude other threads, we do not need to exclude ourself!

This is useful because we may not know whether or not we have the lock already. In
fact designing the program so that ownership or not of the available mutexes is always
evident at each point of the program, is very difficult. In the following example, we may
like to call g() without already having the lock, so we let the body of g() acquire it, but
this is impossible without re-entrant mutexes because then calls of g() by threads that
actually do have the lock will deadlock.

void f() {

lock(myMutex);

critical section...;

g();

critical section...;

unlock(myMutex);

}

void g() {

lock(myMutex);

critical section...;

unlock(myMutex);

}

A common idiom is for functions like g() to not acquire the lock, even though they need
it, and for the function documentation to mention that the caller must have the lock
before calling that function. This is exposing the synchronisation (that is inherent to the
algorithm) to the caller, breaking encapsulation. Java’s documentation for wait(), from
the API reference, requires us to have the lock before calling the function: “The current
thread must own this object’s monitor”. This is strange, however, since Java has re-entrant

10

2.2. Synchronisation via monitors

locks, and could instead have just acquired the lock from inside wait(). Instead I have
often used the following pattern in programs, which wastes space:

synchronized(o) { o.wait(); }

If re-entrant mutexes are more intuitive, and promote more encapsulation of code, why do
non-re-entrant mutexes persist? Because if the mutex does not have to maintain a counter,
the implementation of that mutex can be much more efficient.

Perhaps we should use static analysis to detect when a mutex is not “recursively”
locked, and use the faster mutex in this case2, but this is not the subject of this report.
Sometimes, there are run-time checks to see if a non-re-entrant mutex is locked twice by a
thread, which can be enabled while the programmer is debugging.

It is possible to implement re-entrant locks on top of non-re-entrant locks in the fol-
lowing manner, so they do not add to the expressiveness of a language by the definition of
[5]: (this is also the way that Linuxthreads implements recursive mutexes)

void r_lock(mutex) {

if (mutex.thread==currently_running_thread) {

mutex.counter++;

} else {

lock(mutex.real_mutex);

mutex.thread := currently_running_thread;

}

}

void r_unlock(mutex) {

mutex.counter--;

if (mutex.counter==0) {

mutex.thread := null;

unlock(mutex.real_mutex);

}

}

Note that in the above implementation, currently_running_thread allows us identify
and compare the various threads at run-time, in the algorithm itself. Therefore we need
the language to provide this feature in order for this algorithm to be expressible.

2.2.5 The behaviour of condition variables

In both Java, and POSIX, there are three functions that implement a kind of low-level
synchronous message passing. The functions are wait(), notify(), and notifyAll().
Calling it a kind of synchronous message passing is a bit of a stretch because no infor-
mation is actually transferred. But aside from this detail, we can imagine that a thread
calls wait() to receive a message, which blocks until another thread calls notify() or
notifyAll().

2This would not locate all the places where a faster non-re-entrant mutex can be used without deadlock,
but it would still be better than using the slower re-entrant kind for everything.

11

Chapter 2. Background

The basic idea is that one thread writes the information into shared memory, while the
receiving thread waits. When the information has been written, the writing thread notifies
the receiving thread, which then reads the information out of shared memory, and both
threads then continue as normal. The difference between notify() and notifyAll() is
that if there is more than one thread waiting, notifyAll() will restart all of them, whereas
notify() picks an arbitrary thread to restart.

In the example below, the “message” consists of a pair of integers, stored in the shared
variables a and b:

thread1() {

...

wait();

printf("a+b="+(a+b));

}

thread2() {

...

x := random();

a := x;

b := x;

notify();

...

}

Actually, there is a relationship between the mutexes and the condition variables. One
waits upon and notifies a specific mutex, which is specified in the argument of the calls.
In Java, every object has a mutex embedded within it, so one calls obj.wait(). In order
to call any of the three condition variable functions, you must possess the lock on the
associated mutex3. In the example above, this is not inconvenient because if more than
one thread is writing a message to the shared memory, there would be a race condition.
Likewise, if one thread is reading the message, the writer needs to wait until the reader
has finished reading, so we have to protect the variables a and b anyway. We refine the
example:

thread1() {

lock(mutex);

...

wait(mutex);

printf("a+b="+(a+b));

unlock(mutex);;

}

thread2() {

...

x := random();

3This is actually an implementation detail which has been unfortunately (and unnecessarily) exposed
to the programmer. Using re-entrant mutexes we can implement these functions so that they can take the
lock themselves.

12

2.3. Synchronisation via chords

lock(mutex);

a := x;

b := x;

notify(mutex);

unlock(mutex);

...

}

To make this work, we need the call to wait() to give up the lock as it enters the waiting
state. Otherwise no thread could actually be notified, since the thread doing the notifying
would need the lock, but the waiting thread would still possess the lock. However, the
waiting thread has to lock the mutex again when it wakes, before it can continue. This
effectively divides the critical section into two atomic parts, so we must make sure any
assumed invariants hold when wait() is called. When notify() is called, the lock is not
given up, so the threads that are awoken do not actually make any progress until the
notifying thread gives up the lock at the end of its critical section.

In summary, condition variables allow one thread to synchronously communicate with
another thread in a very low level, fundamental way. As we shall see, this behaviour is
sufficient to encode the more high-level chords, as well as many other kinds of message
passing. We conclude with the following remark from [8], which hints at the potential for
less fundamental constructs such as chords.

“This design of the condition variable has been deliberately kept as primitive
and rudimentary as possible, so that it may be implemented efficiently and
used flexibly to achieve a wide variety of effects. There is a great temptation
to introduce a more complex synchronization primitive, which may be easier
to use use many purposes. We shall resist this temptation for a while.”

2.3 Synchronisation via chords

Chords are a recent idea, proposed in an extension of C] called Polyphonic C][2]. The
semantics of chords is inspired by the join calculus[6]. Chords synchronise through mes-
sage passing, and thus there is a dualism between synchronisation and data. The basic
idea is that instead of one thread invoking a method body by calling the method (as is
conventional), several threads invoke a chord body, by each calling a separate method. A
chord is therefore a set of methods and a chord body, instead of a single method and a
method body.

int f(int a) & async g(int b) & async h(int c) {

return a+b+c;

}

The arguments from all of the method calls come together to instantiate the chord body,
which is executed either in a new thread (for asynchronous chords) or in the thread that
called the synchronous method (for synchronous chords) in a similar manner to conven-
tional methods. We can consider the method calls to be passing their arguments as a
message, and since this happens between threads, this is therefore an example of inter-
thread communication.

13

Chapter 2. Background

2.3.1 Behaviour

A chord is either an asynchronous chord, in which case we say all its methods are asyn-
chronous, or it is a synchronous chord, in which case one of its methods is synchronous,
and the rest are asynchronous. The above chord is synchronous, the following chord is
asynchronous.

async g(int b) & async h(int c) {

printf(b+c);

}

When an asynchronous method is called, the argument is held in a temporary, unordered
queue, and control immediately returns. The queue stores the asynchronous method’s
argument values until they are used in a chord body. Thus, all asynchronous methods have
an associated queue. In an asynchronous chord, where all the methods are asynchronous,
the chord body will be invoked in a new thread when there is a message available in the
queue for each of its constituent methods. The chord is said to be “strung”. The choice of
which element popped from a queue when this occurs is non-deterministic, i.e. the queue
is not a “fifo”.

When a synchronous method is called, the thread may stall. Synchronous methods
exist as part of any number of synchronous chords. Let us take any synchronous chord of
which it is a member (and thus all the other members of that chord are asynchronous).
The behaviour of the call is dependent on the state of the queues of all the asynchronous
methods in that chord.

• If there is a message available on each queue, the body of the chord will be invoked
in the thread that called the synchronous method, just like a conventional method
invocation, and an argument will be popped from each queue for the body to use.

• If there are not sufficient messages available to instantiate the chord body, the method
call blocks, and the calling thread enters a “wait queue”. At some later time, when
at least one message has been pushed onto each of the required queues, the thread
is woken up and the chord body is invoked as above.

The call only blocks if none of the synchronous chords, of which the synchronous method is
a member, have a full complement of non-empty queues. If there is more than one contend-
ing synchronous chord whose asynchronous method queues are non-empty, an arbitrary
chord body is invoked (another example of non-determinism in chord semantics).

It is the synchronous chords that provide actual synchronisation, the asynchronous
chords are simply a convenient way to start new threads. One key aspect of chords is
that the act of calling methods is tightly coupled with synchronisation. A more detailed
introduction to chords (with much advocacy) can be found in [2], and also in [4], together
with many examples.

2.3.2 Example

Here, we present an example of an application which is ideally suited to a chorded imple-
mentation. This is slightly adapted from [12, 2]. The reason this application is appropriate

14

2.4. Spawning threads

for chords, is that its requirements for the behaviour of asynchronous message passing hap-
pen to be identical to the semantics of chords. The queueing of messages is correct, and
message passing is coupled neatly with method invocation. Thus, the code need only act
as a thin intermediate layer between the semantics and the user.

An “active object” is an object that has associated with it its own thread. Conven-
tionally, when an object’s methods are called, the method body is invoked into the thread
that called the method. When an active object’s methods are invoked, the effect is asyn-
chronous – the arguments are passed to the object’s thread and the body is executed there.
Execution of the body is deferred. This means that only one thread can be executing any
of the object’s methods at any one time. This can be implemented in chords as follows:
First we have an abstract base class that implements no messages:

public abstract class ActiveObject extends Thread {

abstract void processMessage();

void run () {

while (!done) { this.processMessage(); }

}

}

We now extend this object and pair the processMessage method with an asynchronous
method for each message the active object is to receive. The effect of this is that other
threads can call e.g. addClient(c), which will immediately return, this will then join with
some blocked or future processMessage() call from the object’s thread, where the body
of the addClient chord will then be executed.

class StockServer extends ActiveObject {

void processMessage() & async addClient(Client c) {

/* process addClient message */

}

void processMessage() & async wireQuote(Quote q) {

/* process wireQuote message */

}

void processMessage() & async closeDown() {

/* process closeDown message */

}

}

2.4 Spawning threads

In POSIX, threads are spawned with pthread_create. A pointer to a function is supplied
as an argument to this function, and the run-time environment then executes the referenced
function in a new thread. In Java, threads are wrapped in a Thread object and the
actual creation of a new thread occurs when myThread.start() is invoked, the method

15

Chapter 2. Background

myThread.run() is executed in the new thread (classes inheriting Thread must define this
method). If we consider a Thread object with an overridden virtual method run(), this is
equivalent to having a pointer to a function, so these techniques are very similar.

We do not model the Thread object since it is not used for synchronisation. It is
really an artifact of Java’s “everything is an object” aesthetic. We also do not model
pointers, although we deal with references to objects on the heap which are in some ways
equivalent. We could have modelled the invocation of a new thread with a construct like
fork myObject, and require that myObject implement a method called run, but there is
a simpler solution. We can use a construct that is not present in many realistic languages,
but is equivalent to constructs that are.

In order to model the asynchronous invocation of code in a new process, we use a
spawn e construct in the language, which explicitly specifies the actual code that will
execute in the new thread, rather than implicitly using some convention of a run() method
to hold this code. We claim that spawn e is equivalent to:

(new Runnable() { public void run() { e; } }).start()

This uses an anonymous inner class, which is something we do not model. There are
also problems with using locally defined variables (that are not of final type) within e,
which we also do not model. However, we believe that this is an adequate model of the
thread-creation features of real languages for our purposes.

16

Chapter 3

Approach

We want to draw conclusions about the relative expressiveness of chords and monitors, or
more specifically, of languages that use chords and monitors. Using the technique from
[5] on a realistic programming language would be possible, but a great deal of work. The
majority of such work would be uninteresting as it would not relate to the synchronisation
issues in programming.

Instead we prove properties of abstract programming languages that are much simpler.
We believe that the results scale up to realistic languages, and this will be discussed below.
An additional benefit is that our results will apply to a large number of realistic languages,
since many use the same fundamental approaches to concurrency despite being otherwise
very different.

The abstractions chosen are object-oriented languages. We must be sure that the nature
of inheritance does not interact badly with the kinds of changes that need to be made to
programs when porting them to a different kind of concurrency platform. Concurrency
has been called the next programming revolution after object-oriented programming, so it
makes sense to build from this platform.

Our simplified models of real programming languages can be thought of as missing
some of the less relevant language features, e.g. exceptions, local variables, etc. Our
expressiveness results scale automatically to languages including some of these features,
but others require extensions to our proofs.

The results automatically scale to more realistic languages that are equally expressive
because of the transitivity of the expressiveness relation (it is an equivalence relation). For
instance if we add input/output to the formalisation, the expressiveness is not affected
since we could always have simulated input/output with method calls. Thus, we know
that our results will extend to languages with input/output.

Other features, such as exceptions, would have to be subjected to further proof in the
context of our languages because they increase the expressive power of the language. Only
then can we can be sure that the same results apply. We believe that doing so would
not present any significant problem as the only reason adding features would break the
existing proofs, is if they somehow interfered with synchronisation, and we have modelled
all the features that we believe would be capable of this.

We extend the object-oriented foundation with the different approaches for synchro-
nisation (chords and monitors) to create different languages. We then define translations
between these languages that preserve structure, validity and behaviour. The existence of

17

Chapter 3. Approach

each translation is proof that the source language was at most as expressive as the target
language, and we collect these results together to form a conclusion about the relative
expressiveness of chords and monitors.

Figure 3.1 shows an overview of all the languages and translations defined in this report.
Directed arrows denote formally defined translations, waving lines denote an assumed (but
not proven) equivalence, i.e. the languages concerned are very similar and there is evidence
to justify this assumption. Dotted lines represent many levels of abstraction, i.e. the
relationship between our formal models of programming languages, and real programming
languages.

Chapter 4 defines a chorded language LA with asynchronous and synchronous chords,
and also a chorded language LS with just synchronous chords and a spawn statement.
Ultimately we relate LS to the languages with monitors rather than LA since LS programs
spawn threads in the same way as the languages with monitors, and this makes the trans-
lation of programs simpler. Chapter 5 defines a translation from LA to LS, and proves
the translation preserves program validity and structure. Chapter 6 defines the transla-
tion in the opposite direction, and again proves the preservation of program validity and
structure.

Chapter 7 is the first time we consider monitors. We define a language with monitors,
LJ , and define a translation from LJ to a new chorded language LS+. The new language
LS+ is just LS extended with integers and fields. It would have been preferable to use LS

instead of LS+, but since the translation requires an integer “counter”, it is best to include
integers in the language. Also, while LA and LS can encode fields as proved in [4], this is
not true of LJ , so instead of encoding LJ ’s fields with chords, we leave this step out of the
translation by including fields in LS+. Thus we give a translation from LJ into LS+. The
preservation of program validity and structure over this translation is proven as before.

Chapter 8 concerns the opposite direction. We define an appropriate translation from
LS to a new language with monitors, LJ∗. Again, implementing the semantics of LS

requires more constructs than available in LJ . The new language LJ∗ is a version of LJ

with constructs that represent some implementation of a nondeterministic “queue” library.
The preservation of program validity and structure over this translation is proven.

18

LSLA

School

LJ∗

LS+ LJ

Java, C, etc

Polyphonic C]

Asynchronous chords
Synchronous chords

Spawn
Synchronous chords

Spawn
Synchronous chords
Fields
Integers (inc, dec, zero, nonzero)

Methods
Locks
Fields

Non-deterministic methods (with multiple arguments)
Locks
Queue functionality (push, pop, ndcond)

C] has monitors as well.

Languages with chords (a kind of message passing) Languages with mutexes and signals

Key

“Is at most as expressive as” formally proved

Equal expressiveness assumed

Many levels of abstraction

Figure 3.1: Overview of project

1
9

Chapter 3. Approach

3.1 Extensions of [5]

3.1.1 When languages are unrelated by (⊂)

For languages where one language is not a restriction of the other, [5] suggests that we
consider a language universe containing both languages, and try to show the eliminability
of the set of constructs that distinguish the two languages. This is illustrated below:

L1 ∪ L2

L1 L2

ϕ1 ϕ2

Let:

• L1 and L2 be distinct languages and L1∪L2 be
the language defined by the constructs in both
L1 and L2.

• ϕi : L1 ∪ L2 → Li (for i ∈ {1, 2}) be transla-
tions that preserve program validity, structure,
and behaviour.

Let L1 � L2 if and only if L1 is at most as expressive as L2. Now we can say that for all
i ∈ {1, 2}, Li � L1 ∪L2, due to ϕi. The reverse is due to the identity function, so Li is as
expressive as L1 ∪ L2, and it follows that L1 is as expressive as L2.

In addition to [5], we note that ϕ1 must be homomorphic over all constructs in L1 and
thus over all constructs of L1\L2. Let µ1 : L2 → L1 preserve program validity, structure
(in terms of [5]), and behaviour, i.e. µ1(c(e)) = c(µ1(e)) for all constructs c in L1 ∩ L2.
We can use µ1 to derive a suitable ϕ1:

ϕ1(c(e)) =

{

µ1(c(ϕ1(e))) if c in L2

c(ϕ1(e)) if c in L1\L2

Likewise we can define µ1 in terms of ϕ1 by restricting the domain of ϕ1 to just L2. We
can conclude that we need only specify a pair of appropriate translations µ1 : L2 → L1

and µ2 : L1 → L2 to show that L1 and L2 are equally expressive, in terms of [5]. Since
these translations are smaller than ϕ1 and ϕ2, this is what we use in the rest of this report.

3.1.2 When languages are not homogeneous

The example languages in [5] (such as variations of the lambda calculus) were entirely
described by a syntax definition of the form e ::= ...|...|..., we say they are homogeneous
since every part of a program is defined by syntax. Our object-oriented formalisms have
a more complex structure. The structure of programs includes not only the expressions
that form message bodies (which are homogeneous), but also functions that define the set
of classes, class inheritance, and the set of methods and method signatures within those
classes.

The notion of structure-preservation defined in [5] (that translations must be homomor-
phic over shared program constructs and be macro translations of eliminated constructs)
is ideal for our method bodies. This is because our method bodies are formalised by a
homogeneous syntax of “source expressions” just like the lambda calculus in [5].

20

3.1. Extensions of [5]

However, our formalism of programs has another layer of structure for which the tech-
nique does not readily apply. We now extend the definition of structure preservation so we
can ensure our translated programs have equivalent program designs at this level as well.

If the languages we are comparing are identical at the level of method and class defini-
tions, then there is no reason for the translation to interfere with this part of the structure.
But what do we consider to be interference? How much can we change the top-level struc-
ture of a program before we change the program design? This is unfortunately rather
subjective.

If methods or classes had to be removed, this would damage the modularity of the
software so we would have to consider the program designs to be distinct, but what about
adding methods or classes? As far as readability is concerned, methods and classes tend to
be independent from other methods and other classes. I.e. one can read a class or method
without having to read any other classes or methods. The addition of a method therefore
does not interfere with the readability of the rest of the code.

Since the synchronisation behaviour of a chorded language is coupled with method
invocation, it is inevitable that we will need to create new methods to implement synchro-
nisation, when translating to chorded languages.

If the languages we are comparing are different at the level of method and class defini-
tions, then we try to use the fact that our formalisations are just an alternative represen-
tation of the syntax that would realistically describe the structure of classes and methods.
For example, when removing asynchronous chords from a language, the asynchronous
chords lie alongside the synchronous chords, and are enclosed by the class definition. Thus
the class definition and the synchronous chords should not be changed, but we will need
to replace the asynchronous chords with something – more synchronous chords.

Although the structure of classes has changed, the expression syntax is the same, so
because the translation must be homomorphic over all expression constructs, the chord
bodies must not be changed. For the synchronous chords that have not changed, the
bodies must be preserved intact. For the asynchronous chords that have somehow been
simulated with synchronous chords, their bodies must be preserved in some way, inside
whatever code is used to simulate the behaviour of asynchronous chords.

The situation with type signatures is more complicated, since type signatures have a
wider-reaching effect than just the design of the class – they affect the validity of code in
all parts of the program. Thus any translation that preserves the syntax of method calls,
must preserve the type signatures of classes, although it can still add new methods and
thus new signatures.

3.1.3 When code is duplicated

As an extra criterion for the requirements of structure preservation, we consider it beneficial
that a translation should not duplicate any code from the original program. If a program
design cannot be ported to the target language without duplicating code (and the resultant
difficulties in maintaining said code), programmers will prefer to use the original language.

For example, in [5] there was an encoding of the let construct in the lambda calculus,
using a substitution: ϕ(let x = M in N) = N [M/x]. This was structure-preserving
according to [5], but since it has the potential to duplicate the code M in the generated
program, we consider this a distinct program structure.

21

Chapter 3. Approach

The translations in this report do not duplicate any parts of the original programs.

3.1.4 Exceptions to structure preservation

There are some cases where it is impossible to meet the requirements of structure preserva-
tion in our translations. This is because our formalisms are not perfectly accurate models
of real programming languages, so we exempt these cases from the requirements.

Firstly, arguments are not identified by some defined name in our formalisations, as
they are in real programming languages. For those formalisations where only one argument
is allowed per invoked body, this is referred to with just x. Where there is one argument
for each method that constitutes a chord, we identify the argument by the method that it
came from, e.g. for a method m we use m x. Where there are many arguments for each
method, we assume some specific ordering and identify the arguments with an index xi.
This means that when a method or chord body is moved into a different environment, the
argument variables must be substituted throughout the expression, so that they refer to
the right source of data. Argument variables are, however, a construct shared by all of our
languages, so strictly they must be preserved. This is not a feature of the languages we are
modelling, but a feature of our minimalist model of them, so we justify the substitution
of argument variables as an exception to the structure preservation property. We could
alternatively have solved this problem by extending our formalisms to be more realistic,
and included argument identifiers, but we prefer to keep the semantics as simple and clear
as possible.

Secondly, where a translated program needs to initialise its objects in a way in which the
original program did not, we have to translate the new c expression to a new c.init(voidval)
expression, where init is a method of some form that does the initialisation. Once again
this is a feature of our formalisations rather than real languages, since any real object-
oriented language has constructors. Constructors increase the expressiveness of a language
because without them, you have to initialise every object at the point of instantiation as
just shown. Instead of burdening our semantics with rules for constructors, we instead
make an exception in the rules of structure preservation so that these translations can be
used.

22

Chapter 4

Definition of chorded languages LA

and LS

Before we can formally prove properties of various kinds of programming languages, we
must formally define those languages. We present two languages: LA, which has asyn-
chronous chords for spawning new threads, and LS, which has a spawn statement for this
purpose.

Asynchronous chords were described in section 2.3. The meaning of the statement
spawn e is to invoke the execution of the block of code e in a new thread. In subsequent
computation steps, the new thread will interleave with the other threads in the usual
way. There is no “join” behaviour prescribed by the semantics, but such behaviour can
be implemented by the programmer using synchronous chords. In other words, the new
thread need not interact with the original thread at any time during its life.

We model the semantics of programs using small-step operational semantics (as is
standard with concurrent languages), and we also model a well-formedness judgement
which identifies a class of programs as being valid (using type systems to validate the
source expressions). Although we have not proven “progress” of well-formed programs, we
believe the well-formedness judgement excludes a large proportion of programs that can
enter a run-time state that we consider to be malformed, and for which no execution step
is defined.

Our aim is to show that programs that use asynchronous chords can instead use spawn

without changing their design (chapter 5) and likewise programs using spawn can instead
use asynchronous chords (chapter 6).

4.1 Comparison with the formalisations in [4]

The languages defined in this chapter (LA and LS) are based on a formalisation of a
chorded language called School, presented in [4]. School’s type system was also shown to
have the subject reduction property. LA is more similar to School than LS, because as
already stated, LS does not have asynchronous chords and has a spawn construct instead.

Our language LA takes from School the structure of programs and semantics for dealing
with chord invocation and method calls (i.e. dealing with the queues). As in [4], we do
not include field members in the formalisation since they can be represented with chords.

23

Chapter 4. Definition of chorded languages LA and LS

Aside from superficial technical differences, LA differs from school because we remove
the distinction between asynchronous and void methods that was present in the type
system of [4]. In LA we consider asynchronous methods to have return type void, whereas
in [4] there was a special type async. This meant the set of asynchronous methods and
synchronous methods was disjoint in School, since all asynchronous methods had return
type async whereas synchronous methods had either return type void or c. For the
programmer, this meant that a method could not be both a synchronous and asynchronous
method, or in other words it could not be the synchronous part of a chord, at the same
time as being an asynchronous part of a chord.

When trying to write the translation ϕAS (chapter 5), it was difficult to create a trans-
lation without needing to create a method that was both synchronous and asynchronous,
and thus dropped the distinction in the type system. There were many places in the se-
mantics of School where async and void were explicitly defined to subsume each other
(i.e. be equivalent types) so dropping the distinction in LA makes little difference to the
proofs in [4]. We believe that return value is the only relevant concern in the type system,
and since asynchronous methods return voidval when called, their return type should be
void.

However, there are some strange programs that are now allowed by the well-formedness
judgement. We can have a synchronous chord whose synchronous method is part of the
chord as an asynchronous method as well:

void m() & async m() {

...

}

The above is a well-formed and well-behaved LA and LS program. The behaviour of calls
to m() are non-deterministic, but the calls will always progress. If an object is available
in the queue of m() then the chord body may be invoked, or the argument of the call
may be queued with the others. If the queue is empty, the behaviour is always to add the
argument to the queue. Note that because the argument type is void here, the queue does
not contain any information beyond the number of members, so could be implemented
with just a counter.

We believe from our study of potential translations, but we have not formally proven,
that LA is equivalent to the language School in terms of expressiveness. It is possible to
express the above program in School as the following example shows:

void m() & async m’() {

...

}

void m() {

m’();

}

We did not want to include this extra step in our translation, however, so we defined LA

differently to School.

24

4.2. Guided tour of LA and LS

4.2 Guided tour of LA and LS

The syntax and semantics of LA and LS are given in figure 4.1 and figure 4.2 respectively.
The well-formedness judgement is the same for both languages and is specified in figure 4.3.
First we look at the syntax and semantics of LA in detail, then we summarise the differences
between LA and LS, which are very slight. Finally we will consider the well-formedness
judgement (that applies to both languages).

Many of the atoms we use to denotes various aspects of programs, are shared between
the languages. For instance a program is denoted P in both languages. Where it may
be confusing what language the program is written in, we decorate with the name of
the language, e.g. P A or P S. Likewise, some of the functions are overloaded, and are
defined differently depending on whether their arguments are a part one language or the
other. For instance Sup(P A, c) is defined to be P A↓4 whereas Sup(P S, c) is defined to be
P S↓3. In these cases, the decoration is always given. These higher-level definitions act
like a “portability layer”. They allow us to think in terms of the more abstract concept of
superclass, without needing to consider what element of the program tuple represents this
information.

4.2.1 Programs

LA programs, e.g. P A, are tuples of 4 functions. Those functions represent the type
annotations, synchronous and asynchronous chords in each class, and also the class that
each class inherits.

The only type annotations in the program are the method signatures, i.e. the return
type and argument type for each method. We need only support one argument in each
method because it is easy to simulate multiple arguments by using a chord with one
method for each argument. When no argument is required, we can use a type of void.
The method signature is the first element of the program tuple, but we usually refer to it
with the auxiliary notation M(P, c, m).

As explained in section 2.3, synchronous chords have one synchronous method, and
n ≥ 0 asynchronous methods. Because two chords can have the same synchronous method,
a method can be the synchronous part of many chords. We represent the set of synchronous
chords, of which a method m is the synchronous part, with SChs(P, c, m). This returns a
set of chords, each of which is a tuple containing the set of asynchronous methods and a
method body.

Asynchronous chords are comprised entirely of asynchronous methods. No method is
special in the set of asynchronous methods that comprises an asynchronous chord, so we
just collect the set of asynchronous chords and represent it with AChs(P, c, m).

Every class in the program extends another class. The set of classes in a program, is
in fact the set of classes c for which Sup(P, c) is defined. There is a class Object ∈ Idc

that has no members, for which Sup(P, Object) is not defined. Thus this class is not part
of any program, but other objects can extend it, if they do not extend any of the classes
within the program.

Source expressions are used in chord bodies, and are defined by a context free gram-
mar, as is standard. The atom null represents the lack of an object, whereas voidval

represents the lack of any value at all. this refers to the value of the current object’s

25

Chapter 4. Definition of chorded languages LA and LS

address, and m x is the argument variable that was supplied by the method m of the en-
closing chord. We refer to argument variables by the name of the method which supplies
them. new c instantiates a class and returns the address of the instance, and the other
two constructs – method call and sequential composition are standard in object oriented
imperative languages.

The function Q(P, c) is the set of queues required for a class c in program P . As
described in section 2.3, the arguments of asynchronous method calls are placed on an un-
ordered queue. Thus for each asynchronous method in a class, we need a queue. The defi-
nition of Q(P, c) therefore extracts the asynchronous methods from both the synchronous
and asynchronous chords.

4.2.2 Execution

Execution is modelled with a state transition relation. Using a relation instead of a function
allows us to model the intrinsic non-determinism of concurrent programming languages.
Each run-time state can transition to one of a set of run-time states. The set of possible
transitions depends not only on the current state, but also on the program being executed.

The state of execution consists of some threads and a shared heap. The state of a thread
is modelled with run-time expressions that mutate slightly with each step of execution.
Real implementations would use a stack, and a program counter, but it is simpler for us to
store this information in an expression with a well-defined syntax. This syntax is the same
as that which defines source expressions, except the variable this and argument variables
are replaced with concrete values such as addresses of instances on the heap.

The heap is represented with a partial function from the natural numbers to objects.
Unallocated addresses are undefined in the mapping. Instances are represented using tuples
that contain the instance’s class (to facilitate late-binding), and the queues within that
instance.

Since we have only one argument in our method calls, we need only store single values
in the queues. Since the queue is an unordered collection of values, the set of queues is
Multiset(V al), which is the set of multisets of V al. A multiset of S is a sequence of
members of S, e.g. (s1, . . . , sn) which we consider equivalent modulo re-ordering, i.e. all
the permutations of a multiset are the same multiset. A multiset is not the same as a set,
however, because a multiset can have duplicated elements whereas a set cannot.

The set of run-time states is State = Multiset(RunExpr) × Heap, i.e. a run-time
state consists of a multiset of threads and a shared heap. We therefore consider a sequence
of threads, but we do not observe any kind of ordering on these threads. We could have
expressed this with a semantics rule that permuted the threads, but I feel this is a techni-
cality of our formalism rather than a feature of the languages we are modelling, so it does
not belong explicitly in the set of semantics rules.

The relation that defines execution, (), is of type L × State × State, but we denote
instances of the relation as so: P ` ({e1 . . . en}, h) ({e′1 . . . e′m}, h

′) because the program
P guides the course of execution. The brackets do not resolve any ambiguity, so we may
remove them to save space. We contract the relation to P ` e1 . . . en, h e′1 . . . e′m, h′.
The rules that define this relation are (Run), (Strung) and (Spawn).

Because our semantics are a small-step operational semantics, we use a context syntax,
to express the idea that only a small part of the run-time expression is relevant to the

26

4.2. Guided tour of LA and LS

execution step. Only the relevant part will be affected by the execution step, the rest will
remain unchanged. A context of an expression represents all the parts of the expression
that are inert because either they are waiting for something (such as the resolution of
a sub-expression to a value) or they have already evaluated to a value and the focus of
execution has moved to another part of the expression.

For example, consider the expression voidval; ι.m(ι.m′(v)) = E[ι.m′(v)] where E[·] =
voidval; ι.m(·). The context E[·] allows us to package away and ignore the irrelevant parts
of the run-time expression, when specifying the course of execution. It allows us to specify
execution order for method calls and sequential composition, because we define what part
of the expression is to be executed, and which is to be packaged away and ignored.

The rule (Run) introduces another kind of state transfer relation, that only considers a
single thread. This is factoring out what would be duplication in our rules, because there
are number of semantics rules that apply to a thread without reference to any other threads.
These rules are (New), (InvA), and (InvS). It also abstracts away from the context of the
thread, so the rules (New), (InvA), and (InvS) only apply to threads with no contexts.

The rule (New) specifies that execution of new c should define a new instance at some
previously unallocated address on the heap, with an empty set of queues. We use the
lambda notation to define the function that represents the instance’s queues.

The rule (InvA) defines the execution of an asynchronous method call, i.e. putting
the argument on the queue and returning immediately. We bind c to the instance ι’s
class, and qs to its queues (which is a mapping from asynchronous methods to multisets
of values). Recall that a method of class c is asynchronous if and only if it is a member of
Q(P, c), since Q is defined to extract the asynchronous methods from both synchronous
and asynchronous chords. We use] to denote multiset union, which we use to represent
the addition of the argument value to the queue.

The rule (InvS) defines the behaviour of synchronous method calls. This involves
extraction of the various arguments from the various queues. The choice of which chord
to invoke is arbitrary, so long as it is a synchronous chord of which m is the synchronous
method, i.e. if it is in SChs(P, c, m). We bind m1 . . .mn to the asynchronous methods
in the chosen chord, and e as the body of the chosen chord. The body will be pushed
into the run-time expression with an appropriate substitution to turn it from a source
expression into a run-time expression, i.e. replacing references to argument variables and
this with values. We extract the arguments from the qs by defining a new queue for each
asynchronous method qi, that is one member less than the original queue qs(mi). Thus
the rule only applies when all the relevant queues are non-empty. The value removed is
used in the substitution of argument variables, and the new queue is mapped over the top
of the old one, in the resultant heap.

The rule (Strung) is very similar to (InvS) because it is also invoking a chord body
and using an appropriate substitution to convert it into a run-time expression. The main
difference is that it spawns a new run-time expression alongside the existing threads. Thus
it does not require any of the existing threads to be in any particular state, and can “fire”
at any time if the relevant queues are non-empty.

Execution of the program can be stuck, i.e. there are no rules that apply to the
current run-time state, in a number of conditions. Null pointer de-referencing – there is no
provision for any kind of null pointer exception in the event of trying to execute null.m().

27

Chapter 4. Definition of chorded languages LA and LS

Deadlock – all “active” threads blocked at a synchronous method call because some queues
are non-empty and no threads are running so no values will be put into these queues. No
chord defined – we can define a program that has a class with methods, but no chord
defined that uses those methods (this means those methods are not in Q, nor are there
any synchronous chords associated with the method, so neither (InvA) not (InvS) apply).
Valid termination – when execution has reduced the run-time expression to a value (in a
context), the execution is “complete”.

The semantics is non-deterministic for several independent reasons. An arbitrary
thread is selected from the multiset in rule (Run). If a method is both an asynchronous
method and a synchronous method, both (InvA) and (InvS) may be applicable. The
(Strung) rule may apply at the same time as other rules apply. The selection of a value (in
(InvS), (Strung)) from a queue that is greater than one element in size is non-deterministic
because the queues are unordered. It is non-deterministic what address is used to store
newly-constructed instances, but this is of very little consequence to the execution of the
program, since we can consider the states equal up to renaming of addresses. If there
are multiple chords whose queues are non-empty, the choice of which chord to invoke is
arbitrary.

The difference between LA and LS is slight: With no asynchronous chords, the defini-
tion of LS programs is a tuple of 3 elements instead of 4. The strung rule is unapplicable
for no chord are in AChs(P S, c, m). The expressions (both source and run-time) syntax are
extended with the spawn e construct. Finally there is a rule (Spawn) that describes how
spawn e is executed. It puts the e into its own thread, and replaces the spawn statement
with voidval.

4.2.3 Well-formed programs

A program is well-formed (` P) if all its classes are well-formed. Recall that the set of
classes in a program is the set of classes for which Sup(P, c) is defined, because every class
has a parent class, but not every class has methods, or chords.

A class is well-formed if it extends a valid class (valid classes are the set of classes
in the program, and the class Object). We also require that method type signatures be
preserved over inheritance, although no inheritance of chords is required. As is standard,
we allow subtypes to be returned, and super-types to be consumed as arguments of the
methods in the subclass.

Unfortunately, while the inheritance of method bodies in conventional languages is
straight forward, it is not obvious how to inherit the chords themselves, so we side-step
this issue. One side-effect of this is that it is possible to extend a class but define no chords,
in which case any method invocations will result in a stuck execution.

We require the type of chord bodies to match the return type of their synchronous
methods (with synchronous chord) or to be void (for asynchronous chords). It is easy
to make any expression e of type t, into a void type by using instead the expression
e; voidval.

28

4.2. Guided tour of LA and LS

Programs:

P A ∈ LA = Idc × Idm → Methsig (Type signatures)
× Idc × Idm → P(ChordA) (Synchronous chords)
× Idc → P(ChordA) (Asynchronous chords)
× Idc → Idc (Superclass)

Methsig ::= t m(t)
t ∈ Type ::= c | void
ChordA = P(Idm) × SrcExprA

eA ∈ SrcExprA ::= null | voidval | this | m x | new c | eA.m(eA) | eA ; eA

m ∈ Idm c ∈ Idc

M(P, c, m) = P↓1(c, m) SChs(P, c, m) = P↓2(c, m)

AChs(P A, c) = P A↓3(c) Sup(P A, c) = P A↓4(c)

Q(P, c) =
⋃

{ ch↓1| ch ∈ AChs(P, c) ∨ ∃m.ch ∈ SChs(P, c, m) }

Runtime objects and semantics:

h ∈ Heap = N → (Idc × (Idm → Multiset(V al)))
eA ∈ RunExprA ::= v | new c | eA.m(eA) | eA ; eA

v ∈ V al ::= null | voidval | ι
ι ∈ N (Addresses)
EA[·] ::= EA[·].m(eA) | ι.m(EA[·]) | EA[·] ; eA | v ; EA[·]

P ` e, h e′, h′

P ` e1 . . . en, E[e], h e1 . . . en, E[e′], h′ (Run)

h(ι) = Udf
P ` new c, h ι, h[ι 7→ Jc‖λm.∅K]

(New)

h(ι) = Jc‖qsK, m ∈ Q(P, c)

P ` ι.m(v), h voidval, h[ι 7→ Jc‖qs[m 7→ qs(m)] {v}]K]
(InvA)

h(ι) = Jc‖qsK, ({m1 . . . mn}, e) ∈ SChs(P, c,m)
∀i ∈ {1 . . . n}.qs(mi) = {vi}] qi

h′ = h[ι 7→ Jc‖qs[m1 7→ q1 . . . mn 7→ qn]K]

P ` ι.m(v), h e[v1/m1 x . . . vn/mn x, v/m x, ι/this], h′

(InvS)

h(ι) = Jc‖qsK, ({m1 . . . mn}, e) ∈ AChs(P A, c)
∀i ∈ {1 . . . n}.qs(mi) = {vi}] qi

h′ = h[ι 7→ Jc‖qs[m1 7→ q1 . . . mn 7→ qn]K]

PA ` e1 . . . en, h e1 . . . en, e[v1/m1 x . . . vn/mn x, ι/this], h′

(Strung)

Figure 4.1: Syntax and semantics for LA.

29

Chapter 4. Definition of chorded languages LA and LS

Programs:

P S ∈ LS = Idc × Idm → Methsig (Type signatures)
× Idc × Idm → P(ChordS) (Synchronous chords)
× Idc → Idc (Superclass)

Methsig ::= t m(t)
t ∈ Type ::= c | void
ChordS = P(Idm) × SrcExprS

eS ∈ SrcExprS ::= null | voidval | this | m x | new c | eS.m(eS) | eS ; eS

| spawn eS

m ∈ Idm c ∈ Idc

M(P, c, m) = P↓1(c, m) SChs(P, c, m) = P↓2(c, m)

AChs(P S, c) = ∅ Sup(P S, c) = P S↓3(c)

Q(P, c) =
⋃

{ ch↓1| ch ∈ AChs(P, c) ∨ ∃m.ch ∈ SChs(P, c, m) }

Runtime objects and semantics:

eS ∈ RunExprS ::= v | new c | eS.m(eS) | eS ; eS | spawn eS

ES[·] ::= ES[·].m(eS) | ι.m(ES [·]) | ES[·] ; eS | v ; ES[·]

(Run) (New) (InvA) (InvS) from figure 4.1

P S ` e1 . . . en, E[spawn e], h e1 . . . en, E[voidval], e, h
(Spawn)

Figure 4.2: Syntax and semantics for LS.

30

4.2. Guided tour of LA and LS

Well-formedness:

∀c.Sup(P, c) 6= Udf =⇒ P ` c

` P
(WFProg)

P ` Sup(P, c) �cl

∀m.M(P, Sup(P, c), m) = tr m(ta) =⇒ ∃t′r v tr, t
′

a w ta.M(P, c, m) = t′r m(t′a)

∀m, ({m1 . . . mn}, e) ∈ SChs(P, c, m).
∀i ∈ {1 . . . n}.M(P, c, mi) = void m(ti),
M(P, c, m) = t m(t0),
P, [m1 x 7→ t1 . . .mn x 7→ tn, m x 7→ t0, this 7→ c] ` e : t

∀({m1 . . .mn}, e) ∈ AChs(P, c).
∀i ∈ {1 . . . n}.M(P, c, mi) = void m(ti),
P, [m1 x 7→ t1 . . .mn x 7→ tn, this 7→ c] ` e : void

P ` c

(WFClass)

Sup(P, c) 6= Udf ∨ c = Object

P ` c �cl
(IsClass)

Source type rules:

v ∈ {this,m x}

P,Γ ` v : Γ(v)
(STVar)

P ` c �cl

P,Γ ` null : c
(STNull)

P,Γ ` voidval : void (STVoid)
P ` c �cl

P,Γ ` new c : c
(STNew)

P,Γ ` e1 : c
P,Γ ` e2 : t

M(P, c,m) = tr m(t)

P,Γ ` e1.m(e2) : tr

(STInv)
P,Γ ` e1 : t1
P,Γ ` e2 : t2

P,Γ ` e1 ; e2 : t2

(STSeq)

P,Γ ` e : c
P,Γ ` Sup(P, c) : c′

P,Γ ` e : c′
(STSub)

P,Γ ` e : void

P,Γ ` spawn e : void
(STSpawn)

We also define c v c′ (in the context of some program P) as the reflexive transitive closure
of the inheritance relation defined by Sup, i.e. c v c, c v Sup(P, c), and c v c′ ∧ c′ v
c′′ =⇒ c v c′′.

Figure 4.3: Rules for well-formed chorded programs in LA and LS.

31

Chapter 5

LA is at most as expressive as LS

In this chapter we define a translation ϕAS from LA to LS. We show that the translation
preserves program structure, validity, and behaviour.

5.1 Definition of the translation ϕAS

5.1.1 Examples

Before giving the translation, we show how a fairly general asynchronous chord, can be
converted into a pair of synchronous chords, using the spawn statement. Since each asyn-
chronous chord and each class is treated independently in the translation, we can imagine
how this process scales up to arbitrary programs. Below we give the example program as
the programmer might write it, and as our formalism represents it.

class c {

async m1(t1 m1_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async;

}

}

M(P A, c, m1) = void m(t1), M(P A, c, m2) = void m(t2) . . . M(P A, c, mn) = void m(tn)

∀m.SChs(P A, c, m) = ∅
AChs(P A, c) = {({m1 . . . mn}, easync)}
Sup(P A, c) = Object

(and thus we can derive Q(P A, c) = {m1 . . .mn})

If we choose a method from the above asynchronous chord, say m1, and change it from
an async to a void, we will have a synchronous chord instead of an asynchronous one.
However, now if m1 is invoked when one of the queues for the other methods is empty, the
calling thread will be blocked, so the behaviour is not the same.

To remedy this, we use the spawn construct to allow this blocking to occur in a new
thread, and the calling thread can proceed as before. We could wrap every invocation
of m1 with spawn m1 throughout the program, but this would not preserve the program
structure. Instead, we remove the chosen method from the chord, leaving in its place a
“new” synchronous method m1’. We call this process “plucking”, and the new method is

32

5.1. Definition of the translation ϕAS

called the “shadow” of the plucked method, so here we plucked m1 from the chord, and m1’

is its shadow. The shadow will not interfere with any other chord joins since it is “new”
and therefore not part of any other chords.

The plucked method acts as an asynchronous wrapper around the shadow. It uses the
spawn construct, to allow the blocking (that calling the shadow causes when a queue is
empty) to occur in a new thread.

class c {

void m1(t1 m1_x) {

spawn this.m1’(m1_x)

}

void m1’(t1 m1’_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async[m1’_x/m1_x];

}

}

M(P S , c, m1) = void m(t1), M(P S , c, m2) = void m(t2) . . . M(P S , c, mn) = void m(tn)
M(P S , c, m′

1) = void m(t1)

AChs(P S , c) = ∅
SChs(P S , c, m1) = {(∅, spawn this.m′

1(m1 x))}
SChs(P S , c, m′

1) = {({m2 . . . mn}, easync[m
′

1 x/m1 x])}
Sup(P S , c) = Object

(and thus we can derive Q(P A, c) = {m1 . . .mn})

Calls to the plucked method have the same behaviour as before. The newly-spawned
thread will act as a queue, waiting for the queues of m2 . . . mn to become non-empty before
proceeding with the body e_async. Note that we have not changed the e_async code (up
to renaming of argument variables). No other code should call the shadow method.

As another example, we create a second chord with the same method ‘footprint’ but
with a different body:

class c {

async m1(t1 m1_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async;

}

async m1(t1 m1_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async’;

}

}

M(P A, c, m1) = void m(t1), M(P A, c, m2) = void m(t2) . . . M(P A, c, mn) = void m(tn)

∀m.SChs(P A, c, m) = ∅
AChs(P A, c) = {({m1 . . . mn}, easync), ({m1 . . .mn}, e′async)}
Sup(P A, c) = Object

(and thus we can derive Q(P A, c) = {m1 . . .mn})

When we translate this program, we must encode both asynchronous chords. We can either
pluck the same method from both or pluck a different method in each. The behaviour is
the same either way. In the translation given in this chapter, we must specify a different
wrapper method for each, regardless of whether we are plucking the same method. Here
is the translated code where we pluck the same method:

33

Chapter 5. LA is at most as expressive as LS

class c {

void m1(t1 m1_x) {

spawn this.m1’(m1_x)

}

void m1(t1 m1_x) {

spawn this.m1’’(m1_x)

}

void m1’(t1 m1’_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async[m1’_x/m1_x];

}

void m1’’(t1 m1’’_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async’[m1’’_x/m1_x];

}

}

M(P S , c, m1) = void m(t1), M(P S , c, m2) = void m(t2) . . . M(P S , c, mn) = void m(tn)
M(P S , c, m′

1) = void m(t1)
M(P S , c, m′′

1) = void m(t1)
AChs(P S , c) = ∅
SChs(P S , c, m1) = {(∅, spawn this.m′

1(m1 x)), (∅, spawn this.m′′

1(m1 x))}
SChs(P S , c, m′

1) = {({m2 . . . mn}, easync[m
′

1 x/m1 x])}
SChs(P S , c, m′′

1) = {({m2 . . .mn}, e′async[m
′′

1 x/m1 x])}
Sup(P S , c) = Object

(and thus we can derive Q(P A, c) = {m1 . . .mn})

Here, we pluck m1 from the first chord and m2 from the second:

class c {

void m1(t1 m1_x) {

spawn this.m1’(m1_x)

}

void m2(t2 m2_x) {

spawn this.m2’(m1_x)

}

void m1’(t1 m1’_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e_async[m1’_x/m1_x];

}

async m1(t1 m1_x) & void m2’(t2 m2’_x) & ... & async mn(tn mn_x) {

e_async’[m2’_x/m2_x];

}

}

M(P S , c, m1) = void m(t1), M(P S , c, m2) = void m(t2) . . . M(P S , c, mn) = void m(tn)
M(P S , c, m′

1) = void m(t1)
M(P S , c, m′

2) = void m(t2)

AChs(P S , c) = ∅
SChs(P S , c, m1) = {(∅, spawn this.m′

1(m1 x))}
SChs(P S , c, m2) = {(∅, spawn this.m′

2(m2 x))}
SChs(P S , c, m′

1) = {({m2 . . . mn}, easync[m
′

1 x/m1 x])}
SChs(P S , c, m′

2) = {({m1, m3 . . . mn}, e′async[m
′

2 x/m2 x])}
Sup(P S , c) = Object

(and thus we can derive Q(P A, c) = {m1 . . .mn})

34

5.1. Definition of the translation ϕAS

Note that in the above example, m1 and m2 are both synchronous and asynchronous
methods in different chords. With this example, we can avoid this situation by plucking
the same method from both chords, but this will not always be possible:

class c {

async m2(t2 m2_x) {

e_a;

}

void m1(t1 m1_x) & async m2(t2 m2_x) {

e_s;

}

}

The above program can only translate to the following code, since we have no choice but
to pluck m2 from the asynchronous chord:

class c {

void m2(t2 m2_x) {

spawn this.m2’(m2_x);

}

void m2’(t2 m2’_x) {

e_a;

}

void m1(t1 m1_x) & async m2(t2 m2_x){

e_s;

}

}

This is why we changed the well-formedness relation of School – to allow these translations
to be well-formed.

5.1.2 Translation

The encoding is given in figure 5.1 (recall that v is the reflexive transitive closure of
the inheritance relation, defined in figure 4.3). Because the encoding defines a range of
equivalent translated programs (since the choice of which method to pluck, as well as the
choice of name for the shadow method, are arbitrary), we collect this flexibility into a
single “decision” function δ, which is provided as an argument to ϕAS. We can thus ensure
that the translation produces valid programs, if we require some sensible properties from
the decision function.

δ : ∆ = (Idc × ChordA) → (Idm × Idm)

For each asynchronous chord ch in class c, δ(c, ch) tells us which method is being plucked,
and what method is the shadow. The result of ϕAS(P A, δ) is only well-defined when δ is
well-formed, i.e. that P A ` δ as defined below:

35

Chapter 5. LA is at most as expressive as LS

ϕAS(P A, δ) = P S if and only if

SChs(P S , c, m) = SChs(P A, c, m)

∪ { (ch↓1\{mc}, ch↓2[m x/mc x]) | ch ∈ AChs(P A, c), δ(c, ch) = (mc, m) }
∪ { (∅, spawn this.m′(m x)) | ch ∈ AChs(P A, c), δ(c, ch) = (m, m′) }

Sup(P S , c) = Sup(P A, c)

M(P S , c, m) =

{

M(P A, c, m) if M(P A, c, m) 6= Udf
void m(t) if ∃ch, c v c′ . δ(c′, ch) = (mc, m),M(P A, c′, mc) = void mc(t)

Figure 5.1: Translation ϕAS : (LA × ∆) → LS

PA ` δ ⇐⇒ ∀c, ch ∈ AChs(P A, c) .
δ(c, ch)↓1 ∈ ch↓1,

∀c′, ch′ ∈ AChs(P A, c′) . δ(c′, ch′)↓2 = δ(c, ch)↓2 =⇒ c′ = c, ch′ = ch

∀c′ . M(P A, c′, δ(c, ch)↓2) = Udf
∀c, ch.δ(c, ch) 6= Udf =⇒ ch ∈ AChs (P A, c)

This only requires that the first element of any δ(c, ch) is a valid asynchronous method to
alter, and that the new method is not only unique to that particular class and chord, but
has not been already defined anywhere in the original program (including other classes).
One might imagine that the new methods need only be distinct within each class, since
the classes themselves are a kind of name space, so method names in different classes do
not clash. As it turns out, they do clash because classes can inherit other classes, and thus
a new method name in a base class can interfere with a new method name in a sub class.
It seems simplest for us to ensure all new method names are distinct regardless of class
boundaries.

The values of δ for the four translations given in the previous section are as follows:

δ = [(c, ({m1 . . . mn}, easync)) 7→ (m1,m
′
1)]

δ = [(c, ({m1 . . . mn}, easync)) 7→ (m1,m
′
1), (c, ({m1 . . . mn}, e

′
async)) 7→ (m1,m

′′
1)]

δ = [(c, ({m1 . . . mn}, easync)) 7→ (m1,m
′
1), (c, ({m1 . . . mn}, e

′
async)) 7→ (m2,m

′
2)]

δ = [(c, ({m2}, ea)) 7→ (m2,m
′
2)]

5.1.3 Properties of the translation

These properties are not interesting results in the broader scope of this report, but are
presented here because they reflect the characteristics of this translation, and thus help us
understand it. If P S = ϕAS(P A, δ):

• ∀c . Q(P A, c) ⊇ Q(P S, c) No queues are added over the translation, but some may
be lost because we are representing the queues with idle threads, using spawn.

• From P A ` δ, we know that the definition of M(P S, c, m) is unambiguous, although
it is possible that none of the cases apply. If c v c′ and δ(c′, ch) = (mc, m), then we

36

5.2. Preservation of structure (proof)

know that for all c′′, M(P A, c′′, m) = Udf . Likewise we know that no other ch, c′ w c
exist where δ(ch, c′) defines m as the shadow message, so there is no ambiguity within
the second case.

5.2 Preservation of structure (proof)

We first formally define the property of structure preservation for our programs P S and
P A where P S = ϕAS(P A, δ). We refer to section 3.1.2, where the contribution of [5] is put
into the context of our object-oriented formalisations. In order for the translation to be
structure-preserving, it must satisfy:

• Every syntax construct for source expressions of LA is also a construct of source
expressions of LS, so source expressions must not be changed in the translation.
This means that the method signatures must remain intact as otherwise it would not
be possible to prove well-formedness of P S.

The bodies of synchronous and asynchronous chords are not modified in the transla-
tion, up to the renaming of arguments which we explicitly exempt from the structure-
preservation requirements in section 3.1.4. �

• Method signatures are common to LA and LS, so they must not be altered, although
we do allow addition of new methods.
∀c, m.M(P A, c, m) = msig ⇒ M(P S, c, m) = msig

From P A ` δ we know that the two cases for the definition of M(P S, c, m) in ϕAS

are never both true, so when M(P A, c, m) = msig i.e. M(P A, c, m) 6= Udf , we
know that M(P S, c, m) = M(P A, c, m) = msig. �

• Synchronous chords are common to LA and LS so the synchronous chords in a class
must be preserved, although new synchronous chords can be added:
∀c, m. SChs(P A, c, m) ⊆ SChs(P S, c, m)

This can be seen from the translation because ch ∈ SChs(P A, c, m) =⇒ ch ∈
SChs(P A, c, m) ∪ . . . =⇒ ch ∈ SChs(P S, c, m). �

• Asynchronous chords are present in LA but not LS, so the translation must create
a macro encoding for each asynchronous chord. This means that there must be
something used in place of an asynchronous chord, who’s structure is not dependent
on the asynchronous chord’s body except that it contains one exact copy of the
asynchronous chord’s body.

The translation creates a new synchronous chord containing the body of the asyn-
chronous chord, which is acceptable, and also another synchronous chord containing
an expression that is defined independently of the body. �

• The feature of classes is common to LA and LS, so the structure of classes must be
preserved, although we allow the addition of new classes:
∀c.Sup(P A, c) = c′ =⇒ Sup(P S, c) = c′

We can prove this by inspection of ϕAS, which actually has the stronger property
that no classes are added or removed. �

37

Chapter 5. LA is at most as expressive as LS

5.3 Preservation of well-formedness (proof)

We need to establish that the well-formedness of the translated source code is preserved
over translation, this is the notion of programness in [5]. Let P S = ϕAS(P A, δ). We must
show that ` P A =⇒ ` P S.

Lemma 5.3.1 P A ` c �cl =⇒ P S ` c �cl

Proof:

P A ` c �cl =⇒ Sup(P A, c) 6= Udf ∨ c = Object (IsClass)

=⇒ Sup(P S, c) 6= Udf ∨ c = Object (Def ϕAS)
=⇒ P S ` c �cl (IsClass)

Lemma 5.3.2 Method signatures are preserved over inheritance:
If ` P A and P A = ϕSA(P S, δ) then
∀m.M(P S, Sup(P S, c), m) = tr m(ta) =⇒ ∃t′r v tr, t

′
a w ta.M(P S, c, m) = t′r m(t′a)

Proof:
Let ` P A and M(P S, Sup(P S, c), m) = tr m(ta). We know from the definition of ϕAS

that either...

• M(P A, Sup(P S, c), m) = tr m(ta) in which case since Sup(P S, c) = Sup(P A, c) in
ϕAS we also know M(P A, Sup(P A, c), m) = tr m(ta) and from P A ` c we know that
∃t′r v tr, t

′
a w ta.M(P A, c, m) = t′r m(t′a), thus from the definition of ϕAS we know

that ∃t′r v tr, t
′
a w ta.M(P S, c, m) = t′r m(t′a) �

• ∃ch, Sup(P S, c) v c′ . δ(c′, ch) = (mcall, m),M(P A, c′, mcall) = void mcall(t) and
tr m(ta) = void m(t) in which case c v Sup(P S, c) v c′ so by the same rule,
M(P S, c, m) = tr m(ta) i.e. ∃t′r = tr, t

′
a = ta.M(P S, c, m) = t′r m(t′a) and the rest

follows due to the reflexivity of (v). �

Lemma 5.3.3 Well-typedness of expressions is preserved over the translation:
P A, Γ ` e

A : t =⇒ P S, Γ ` e
A : t

Proof: Induction over the structure of derivations.

Only interesting case is (STSub).

Lemma 5.3.4 If σ is a substitution of argument variables, P, Γ ` e : t =⇒ P, σ(Γ) `
σ(e) : t

Proof: Induction over the structure of derivations.

Only interesting case is (STVar) where we case for the argument either being in the
substitution or not.

38

5.3. Preservation of well-formedness (proof)

Lemma 5.3.5 P A ` c =⇒ P S ` c
Proof:

P A ` c =⇒ P A ` Sup(P A, c) �cl (WFClass)
=⇒ P A ` Sup(P S, c) �cl (Def ϕAS)
=⇒ P S ` Sup(P S, c) �cl (Lemma 5.3.1)

P A ` c =⇒ ∀m.M(P S, Sup(P S, c), m) = msig 6= Udf =⇒
M(P S, c, m) = msig (Lemma 5.3.2)

For all methods m and chords ({m1 . . . mn}, e) ∈ SChs(P S, c, m) either

• ({m1 . . .mn}, e) ∈ SChs(P A, c, m) where e ∈ SrcExprA, thus e ∈ SrcExprS, in
which case:

– ∀i ∈ {1 . . . n} . M(P A, c, mi) = void mi(ti) and since mi is not “new”,
M(P S, c, mi) = void mi(ti) (Def ϕAS).

– M(P A, c, m) = t m(t0) and so M(P S, c, m) = t m(t0) by the same argument.

– P A, Γ ` e : t (where Γ = [m1 x 7→ t1 . . . mn x 7→ tn, m x 7→ t0, this 7→ c]) and
so P S, Γ ` e : t (lemma 5.3.3).

• ch ∈ AChs(P A, c), δ(c, ch) = (mcall, m), {m1 . . .mn} = ch↓1\{mcall}, e = S(ch↓2)
where S = [m x/mcall x]), in which case:

– ∀i ∈ {1 . . . n} . M(P A, c, mi) = void mi(ti) and since mi is not “new”,
M(P S, c, mi) = void mi(ti) (Def ϕAS).

– Since δ(c, ch) = (mcall, m), M(P S, c, m) = void m(tcall) where tcall such that
M(P A, c, mcall) = void m(tcall) (Def ϕAS). We know mcall ∈ ch↓1 (Def δ).

– P A, Γ ` e : t (where Γ = [m1 x 7→ t1 . . .mn x 7→ tn, mcall x 7→ tcall, this 7→ c])
and so P S, S(Γ) ` S(ch↓2) : t (lemma 5.3.4) where S = [m x/mcall x].

• ch ∈ AChs(P A, c), δ(c, ch) = (m, m′), {m1 . . .mn} = ∅, e = spawn this.m′(m x) in
which case:

– Let t, t0 such that M(P A, c, m) = t m(t0). M(P S, c, m) = t m(t0) as seen
before.

– We can show that P S, [m x 7→ t0, this 7→ c] ` spawn this.m′(m x) : t because
m ∈ ch↓1 (Def δ) ensures m returns t = void and M(P S, c, m′) = void m′(t0)
(Def ϕAS).

Since AChs(P S, c) = ∅, the last part of (WFClass) is always true.
The above is sufficient to prove P S ` c. �

39

Chapter 5. LA is at most as expressive as LS

Theorem 5.3.6 ` P A =⇒ ` P S.
Proof:
` P A =⇒ ∀c.Sup(P A, c) 6= Udf ⇒ P A ` c (WFProg)

=⇒ ∀c.Sup(P S, c) 6= Udf ⇒ P A ` c (Def ϕAS)

=⇒ ∀c.Sup(P S, c) 6= Udf ⇒ P S ` c (Lemma 5.3.5)
=⇒ ` P S (WFProg)

5.4 Preservation of behaviour (proof)

This section documents an incomplete attempt to prove that the behaviour of a program
and its translated program are the same. This section is incomplete because we have not
fully identified the property that needs to be proved, and the incomplete proof in the final
part is not a strong enough property. In order to complete this section, we need to review
exactly what property correctly specifies a behavioural equivalence relation, and this will
need more research into related work that there was time to complete during this project.

This section has been left in the report because although incomplete, it gives insight
into the behaviour of translated programs, when compared to the original programs. This
insight was gained through observing the execution of the translation of an example pro-
gram, and how we can show this translation is bisimilar to the original program.

5.4.1 Motivation

Proving that the behaviour of the translated code is equivalent to the original was much
harder than verifying any of the other properties. Firstly, there are many definitions
of what constitutes equivalent behaviour. We wanted to show a kind of observational
equivalence, where the result and effect of executing the translated program (i.e. the effect
on the heap) could be shown to be equivalent in some reasonable way to the result of the
original program.

For instance we could consider programs to be equivalent if they produce the same
results, i.e. we would consider the actual path of execution to be irrelevant. However we
might consider the effect of scaling the input of the program to be observable, and thus we
would want to distinguish programs by their efficiency, or complexity (e.g. most people
consider bubblesort to be different to quicksort).

At the other end of the scale we could consider programs to be equivalent only if
every aspect of their execution was identical. In summary, we must justify our decision
about what subset of behaviours we consider are “observed”, and show that the translation
preserves these behaviours.

In particular, we wanted to show that the concurrency of the program was preserved,
i.e. the non-determinacy (forking) due to the possible interleavings of execution steps in
each thread, the unordering in the queue, and the selection of which chord to invoke when
more than one is possible, was not serialised in the translation.

Preserving concurrency is important, because the program in question may be designed
so it can be executed in a multi-threaded environment where the threads will run in parallel.
The code is designed to execute efficiently in this environment and we must show that the
translation preserves the programmer’s design. We consider preserving parallelism to be

40

5.4. Preservation of behaviour (proof)

as important as complexity, and we would expect a translation of quicksort to preserve the
O(n log(n)) complexity.

It is important that the translated program should not exhibit more behaviours than
the original program. For instance we may be introducing race conditions. To illustrate
– if the original program is capable of driving someone to work every day, we would not
want the translation to be capable of the same behaviour, but also the (very observable)
behaviour of driving into a wall. We must show that the observable behaviour of the
translation is both sound and complete with respect to the original program.

5.4.2 Example

In order to demonstrate that the translation does indeed preserve the non-determinism
of the original program, and does not add any new behaviours as well, we show how the
execution of a simple program and its translation proceeds.

This example program has been chosen because it has a non-deterministic behaviour.
We are particularly interested in the non-determinism due to the choice of executing a
method in a synchronous or asynchronous way, since this is the only part of the behaviour
of a program which is affected by the translation of that program (the translation turns
asynchronous methods into synchronous ones). It is instructive to see how the behaviour
of the translation compares to the original.

Original program P A Translation P S

async m2(t2 m2_x) {

e_a;

}

void m1(t1 m1_x) & async m2(t2 m2_x) {

e_s;

}

void m2(t2 m2_x) {

spawn this.m2’(m2_x);

}

void m2’(t2 m2’_x) {

e_a;

}

void m1(t1 m1_x) & async m2(t2 m2_x){

e_s;

}

δ(c, ({m2}, ea)) = (m2, m
′)

We can now observe the execution of the single runtime expression ι.m2(v2); ι.m1(v1) in
a heap h where h = [ι 7→ Jc‖[m2 7→ ∅]K]. For clarity, we omit the ι from the runtime
expressions, and represent the heap [ι 7→ Jc‖[m2 7→ V]K] with JV K. The possible executions
are shown in figure 5.2. We can see that the net result of executing both programs (the
leaves of the trees) is the same.

5.4.3 Early decision-making

One interesting property of the translation in general, that is illustrated by this example,
is that the choice as to whether to invoke the synchronous or asynchronous chord with the
call to m2(v2) is made “one step earlier” in the translated version. This is because while
in LA there is choice of two “uses” of the value v2 in the queue, in LS there is a choice
as to whether to invoke the call to m2 asynchronously, and put the value in the queue, or
whether to call they synchronous chord of m2 with the value (which does not involve the
queue at all).

41

C
h
a
p
te

r
5
.
L

A
is

a
t

m
o
st

a
s

e
x
p
re

ss
iv

e
a
s
L

S

m2(v2);m1(v1) J∅K

voidval;m1(v1) J{v2}K

voidval; es[v1/m1 x, v2/m2 x] J∅K voidval;m1(v1), ea[v2/m2 x] J∅K

(InvA)

(InvS) (Strung)

m2(v2);m1(v1) J∅K

voidval; m1(v1) J{v2}K

voidval; es[v1/m1 x, v2/m2 x] J∅K

spawn m′

2(v2); m1(v1)] J∅K

voidval;m1(v1), m2′(v2) J∅K

voidval; m1(v1), ea[v2/m2 x] J∅K

(InvA)

(InvS)

(InvS)

(Spawn)

(InvS)

Figure 5.2: Execution of small example program.

4
2

5.4. Preservation of behaviour (proof)

5.4.4 Bisimilarity

Bisimilarity is a method for comparing the concurrent behaviour of two programs. We
say two programs are bisimilar if there is an equivalence relation (∼) ⊆ SA × SS between
the states of each program (we abstract from the actual definition of the runtime state for
LA and LS with SA = Multiset(RExprA)×Heap and SS = Multiset(RExprS)×Heap)
that satisfies the following properties:

∀sA
1 , sA

2 , sS
1 . sA

1 sA
2 ∧ sA

1 ∼ sS
1 =⇒ ∃sS

2 . sS
1 sS

2 ∧ sA
2 ∼ sS

2

∀sS
1 , sS

2 , sA
1 . sS

1 sS
2 ∧ sA

1 ∼ sS
1 =⇒ ∃sA

2 . sA
1 sA

2 ∧ sA
2 ∼ sS

2

For the example given in figure 5.2, we can define an appropriate equivalence relation as
shown in figure 5.3. It works by relating the nodes where decisions occur. This works in
the above example, but it has a strange property: We know that SA ⊂ SS, so it is possible
that ∃sA ∈ SS. With this equivalence, sA � sA, for example voidval; m1(v1) J{v2}K �
voidval; m1(v1) J{v2}K.

Unfortunately we could not find a way to generalise this bisimulation to show that every
program and its translation are bisimilar. We have however proved a similar property with
a much simpler equivalence relation.

5.4.5 A Simpler equivalence relation

This is illustrated in figure 5.4. Firstly note that for all sA, sA ∼ sA. The idea is to relate
states if the information contained in their expressions and the heap are equivalent.

In the translated program, when an asynchronous method is called, values are some-
times not placed on the queue, the call can instead be synchronous and the value gets
embedded in the body of the invoked synchronous chord. To account for this, we define
“pseudo-queues”. Pseudo-queues contain all the values that were not placed on the queues
during the execution of the translated program. Pseudo-queues exist in two forms:

• As extra threads in the state of the translated program. These threads are just
deterministic invocations of the synchronous chord that wraps the around the body
of an asynchronous chord in the original program. The missing value is contained as
the argument to this method call.

• As spawn statements that when executed, will create a thread as described above.
Aside from the spawn statement, the thread has a corresponding thread in the original
program’s state.

These two conditions account for the extra two states in the example of figure 5.4 that
were equivalent to voidval; m1(v1) J{v2}K. To capture the flavour of this equivalence, for
each state sA where there are n queues and mi (i ∈ {1 . . . n}) distinct values in each, there
will be Σi∈{1...n}3

mi equivalent states in SS, as each value can be accounted for in 3 ways.
The equivalence relation is formalised in figure 5.5. Unfortunately this equivalence

is not a bisimilarity since not all equivalent states have the same number of outcomes
(because the decision as to which “outcome” is made earlier in the execution). We can
show the bisimulation property from the translation to the original, i.e.

43

C
h
a
p
te

r
5
.
L

A
is

a
t

m
o
st

a
s

e
x
p
re

ss
iv

e
a
s
L

S

m2(v2); m1(v1) J∅K

voidval; m1(v1) J{v2}K

voidval; es[v1/m1 x, v2/m2 x] J∅K voidval; m1(v1), ea[v2/m2 x] J∅K

(InvA)

(InvS) (Strung)

m2(v2); m1(v1) J∅K

voidval;m1(v1) J{v2}K

voidval; es[v1/m1 x, v2/m2 x] J∅K

spawn m′

2(v2);m1(v1)] J∅K

voidval; m1(v1), m2′(v2) J∅K

voidval; m1(v1), ea[v2/m2 x] J∅K

(InvA)

(InvS)

(InvS)

(Spawn)

(InvS)

Figure 5.3: Equivalent nodes marked

4
4

5
.4

.
P

re
se

rv
a
tio

n
o
f
b
e
h
a
v
io

u
r

(p
ro

o
f)

m2(v2); m1(v1) J∅K

voidval;m1(v1) J{v2}K

voidval; es[v1/m1 x, v2/m2 x] J∅K voidval; m1(v1), ea[v2/m2 x] J∅K

(InvA)

(InvS) (Strung)

m2(v2); m1(v1) J∅K

voidval;m1(v1) J{v2}K

voidval; es[v1/m1 x, v2/m2 x] J∅K

spawn m′

2(v2);m1(v1)] J∅K

voidval; m1(v1), m2′(v2) J∅K

voidval; m1(v1), ea[v2/m2 x] J∅K

(InvA)

(InvS)

(InvS)

(Spawn)

(InvS)

Figure 5.4: Equivalent nodes marked

4
5

Chapter 5. LA is at most as expressive as LS

∀ι ∈ dom(hA) ∪ dom(hS) .
there are c, qsA, qsS such that hA(ι) = Jc‖qsAK, hS(ι) = Jc‖qsSK that satisfy
∀m ∈ dom(qsA) ∪ dom(qsS) .

δ, c, m, ι ` T A, qsA(m) ∼ T S, qsS(m) �Q

δ ` T A, hA ∼ T S, hS

(EqState)

there exists PQ1 such that ∀i ∈ {1 . . . n} .

PQ1(i) =

{v} if eA
i = E[voidval], eS

i = E[spawn ι.m′(v)],

∃ch . δ(c, ch) = (m, m′)

∅ if eA
i = E[voidval], eS

i = E[spawn ι.m′(v)],

∃ch . δ(c, ch) = (mcall, m
′), mcall 6= m

∅ if eA
i = eS

i

there exists PQ2 such that ∀i ∈ {n + 1 . . . n + k} .

PQ2(i) =

{

{v} if eS
i = ι.m′(v), ∃ch . δ(c, ch) = (m, m′)

∅ if eS
i = ι.m′(v), ∃ch . δ(c, ch) = (mcall, m

′), mcall 6= m

V A = V S]
⊎

i PQ1(i)]
⊎

i PQ2(i)
δ, c, m, ι ` eA

1 . . . eA
n , V A ∼ eS

1 . . . eS
n , eS

n+1 . . . eS
n+k, V S �Q

(EqQueue)

Figure 5.5: Simple equivalence relation where] is multiset union. T denotes a multiset of
threads. V denotes a multiset of values, i.e. a single queue.

∀sS
1 , sS

2 , sA
1 . P S ` sS

1 sS
2 ∧ δ ` sA

1 ∼ sS
1 =⇒ ∃sA

2 . P A ` sA
1 sA

2 ∧ δ ` sA
2 ∼ sS

2

However in the other direction we can only show:

∀sA
1 , sA

2 . P A ` sA
1 sA

2 =⇒ ∃sS
1 , sS

2 . δ ` sA
1 ∼ sS

1 ∧ P S ` sS
1 sS

2 ∧ δ ` sA
2 ∼ sS

2

The difference between the two properties is more clearly expressed in this illustrative
notation: The reason we can prove ∀ from the translation to the original program is that
there is only one equivalent state in the original program, for each state in the translation.

∀ S . ∀ ∼1 . ∃ A . ∼2 (bisimulation)

∀ A . ∃ ∼1 . ∃ S . ∼2 (our property)

We feel that this our property is as useful as bisimulation, since the set of states in the
translated program that are equivalent to a state in the original program cannot be dis-
tinguished from each other by the user or the programmer.

5.4.6 Proof of forwards equivalence

Where P S = ϕAS(P A, δ) we prove by induction over P A ` ():

∀sA
1 , sA

2 . P A ` sA
1 sA

2 =⇒ ∃sS
1 , sS

2 . δ ` sA
1 ∼ sS

1 ∧ P S ` sS
1 sS

2 ∧ δ ` sA
2 ∼ sS

2

Case of (Strung)

sA
1 = T A, hA

46

5.4. Preservation of behaviour (proof)

sA
2 = T A] {e′A}, h′A where

e′A = eA[v1/m1 x . . . vn/mn x, ι/this]

hA(ι) = Jc‖qsK
({m1 . . .mn}, e

A) ∈ AChs(P A, c) (the chord that was strung)

∀i ∈ {1 . . . n}.qsA(mi) = {vi}] qA
i

h′A = hA[ι 7→ Jc‖qsA[m1 7→ qA
1 . . .mn 7→ qA

n]K]

Since {m1 . . .mn} is unordered, we let δ(c, ({m1 . . .mn}, e
A)) = (m1, m

′).

Let sS
1 = T S, hS. We may choose any sS

1 so long as δ ` sA
1 ∼ sS

1 .

We know that ∀ι′ ∈ dom(hA) ∪ dom(hS) .

hA(ι′) = Jc′‖qsAK, hS(ι′) = Jc′‖qsSK

∀m ∈ dom(qsA) ∪ dom(qsS) .

δ, c′, m, ι ` T A, qsA(m) ∼ T S, qsS(m) �Q

We leave open how δ, c′, m, ι′ ` T A, qsA(m) ∼ T S, qsS(m) �Q for all ι′ 6= ι, or

m /∈ {m1 . . .mn}.

For δ, c, m1, ι ` T A, qsA(m1) ∼ T S, qsS(m1) �Q we recall that qsA(m1) = {v1}] qA
1

Let V A = qsA(m1) and V S = qsS(m1). We choose any PQ1 and PQ2 so long as
v1 ∈

⊎

i PQ2(i), i.e. ∃i.v1 ∈ PQ2(i). Informally this means that this value is not stored
in a queue in the translated program’s state (i.e. not in V S) but in a “pseudo-queue”.
Formally, it exists within an expression ι.m′(v1) ∈ T S.

For all i ∈ {2 . . . n}, δ, c, mi, ι ` T A, qsA(mi) ∼ T S, qsS(mi) �Q we recall that

qsA(mi) = {vi}] qA
i

Let V A = qsA(mi) and V S = qsS(mi). We choose any PQ1 and PQ2 so long as vi ∈ V S.
Informally this means that this value is stored in a “real” queue in the translated program’s
state, just as it is in the original program’s state. Thus qsS(mi) = {vi}] qS

i .

Now let T S = {e1 . . . ek, ι.m
′(v1)}. We know that hS(ι) = Jc‖qsSK. We know from the

definition of ϕAS that since ({m1 . . .mn}, e
A) ∈ AChs(P A, c) (from earlier) and

δ(c, ({m1 . . .mn}, e
A)) = (m1, m

′) (from earlier) that

({m2 . . .mn}, e
A[m′ x/m1 x]) ∈ SChs(P S, c, m′).

We also know that ∀i ∈ {2 . . . n}.qsS(mi) = {vi}] qS
i and if we let

h′S = hS[ι 7→ Jc‖qsS[m2 7→ qS
2 . . .mn 7→ qS

n]K] then by (Run) with an empty context E,
and (InvS):

P S ` eS
1 . . . eS

k , ι.m′(v1), h
S

eS
1 . . . eS

k , eA[m′ x/m1 x][v2/m2 x . . . vn/mn x, v1/m
′ x, ι/this], h′S

Therefore we choose sS
2 = T S\{ι.m′(v1)}] {e′A}, h′S (e′A defined earlier).

47

Chapter 5. LA is at most as expressive as LS

It remains to show that δ ` sA
2 ∼ sS

2 , i.e. knowing that δ ` T A, hA ∼ T S, hS, showing that:
δ `

T A] {e′A}, hA[ι 7→ Jc‖qsA[m1 7→ qA
1 . . . mn 7→ qA

n]K]
∼

T S\{ι.m′(v1)}] {e′A}, hS[ι 7→ Jc‖qsS[m2 7→ qS
2 . . .mn 7→ qS

n]K]

Note that the domain of h′A and h′S is the same as before.
We must show that ∀ι′ ∈ dom(h′A) ∪ dom(h′S) .

h′A(ι′) = Jc′‖qs′AK, h′S(ι′) = Jc′‖qs′SK
∀m ∈ dom(qs′A) ∪ dom(qs′S) .

δ, c′, m, ι ` T A, qs′A(m) ∼ T S, qs′S(m) �Q

We know that dom(qs′A)∪dom(qs′S) = dom(qsA)∪dom(qsS). We know from earlier that in
some manner, δ, c′, m, ι′ ` T A, qsA(m) ∼ T S, qsS(m) �Q for all ι′ 6= ι, or m /∈ {m1 . . .mn}.
Since qsA(m) = qs′A(m) for these values of m, and the same with qsS and qs′S, this
transfers to the second equivalence if we let the additional thread e′A on each side be
accounted for with an additional PQ1(i) = ∅ and the missing thread on the right hand
side is simply unmapping a certain PQ2(i) = ∅ which has no effect on the union, and thus
the equality of queues.

Where ι = ι′, m = m1, we have to show that
δ, c, m1, ι ` T A] {e′A}, qs′A(m1) ∼ T S] {e′A}\{ι.m′(v1)}, qs

′S(m1) �Q

We know that qsA(m1) = qs′A(m1)] {v1} and qs′S(m1) = qsS(m1). If we take PQ1 and
PQ2 from the previous equivalence, we need only modify PQ2 so it no longer accounts for
the ι.m′(v1), and add an additional PQ1(i) = ∅ for the e′A, since all the other threads are
the same. This gives up one less value on the right hand side of the =, but note that the
same value has also been removed from V A, so the equivalence still holds.

Where ι = ι′, m = mi, i ∈ {2 . . . n}, we have to show that
δ, c, m1, ι ` T A] {e′A}, qs′A(m1) ∼ T S] {e′A}\{ι.m′(v1)}, qs

′S(m1) �Q

We use the same PQ1 with an extra PQ1(k) = ∅ for the extra e′A on each side. We
use the same PQ2 with a certain PQ2(k) = ∅ that used to account for ι.m′(v1) removed,
neither of which affects the union. We know that qs′A(mi) = qsA(mi)\{vi} and qs′S(mi) =
qsS(mi)\{vi} so the equality still holds. �

48

Chapter 6

LS is at most as expressive as LA

We define a translation ϕSA from LS to LA. We show that the translation preserves
program structure, validity, and behaviour.

6.1 Definition of the translation ϕSA

6.1.1 Example

Each spawn statement is changed into an invocation of a new asynchronous chord. The
expression within the spawn statement becomes the body of the chord. Since the original
expression could reference arguments of the form m x, null, this, and voidval, we need
to ensure these references have the same meaning in the body of the new chord.

The new chord is in the same class as the original spawn statement, so the meaning
of this is preserved. null and voidval have the same meaning across all methods and
classes, but we still have to take care of the method arguments.

To do this, we create our asynchronous chord with one method for each argument that
was available to the original spawn statement, i.e. one method for each of the methods of
the synchronous chord that the spawn statement was inside. One of those methods will
be synchronous, but all of the new methods will be asynchronous, and thus have a return
type of void.

At first, we tried replacing spawn statements with the sequential composition of all the
asynchronous method calls that comprise the new chord. This does not work, however,
since if two threads concurrently execute the same ex-spawn site, the two chord invocations
arbitrarily swap arguments, causing a large set of new behaviours. We have to use a simple
mutex (implemented with chords) at each spawn site.

void m1(t1 m1_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

spawn e;

}

We translate to: (The semantics requires an argument for each method in the mutex
implementation, but we use a value of voidval to represent the fact that it is not used.)

init() { this.unlock(voidval) }

49

Chapter 6. LS is at most as expressive as LA

void lock(void lock_x) & async unlock(void unlock_x) { voidval }

void m1(t1 m1_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

this.lock(voidval);

this.m1’(m1_x) ; this.m2’(m2_x) ; ... ; this.mn’(mn_x);

this.unlock(voidval);

}

async m1’(t1 m1’_x) & async m2’(t2 m2’_x) & ... & async mn’(tn mn’_x) {

e[m1’_x/m1_x ... mn’_x/mn_x];

}

Note that the expression e and the context of the spawn site (if there was one) are not
changed, and neither is the structure of classes or the set of existing methods, which is
what we require for macro expressiveness.

6.1.2 Translation

The encoding is given in figure 6.1. Because the encoding can translate into a range of
equivalent programs, depending on what we call the new methods, we collect this flexibility
into a single “decision” function and specify this as an argument to ϕAS.

δ : ∆ = (L → (Idc × Idm × Idm × P(Idm × Idm) × SrcExprS)) × Idm

We also assume that each spawn sub-syntax in P S is labelled with a unique label l, and
the set of labels is L. We omit the details of how this labelling is performed, since it is
a common technique when processing programs. For each labelled [spawn e]l statement,
δ↓1(l) tells us:

• The class that the spawn statement is defined within.

• The lock() method and

• the unlock() method acting as a mutex for that spawn site.

• The mapping of method names to method names, that tells us for each spawn site,
what new asynchronous methods “shadow” the methods from the spawn site’s orig-
inal location.

• The body of the spawn statement (which must be recursively translated).

By abuse of notation we let δ(l) = δ↓1(l). The value of δ↓2 is the name of the method
used for initialising the state of the mutex chords in that class.

The result of ϕSA(P S, δ) is only defined for when δ is well-defined, i.e. P S ` δ as
defined below:

50

6.1. Definition of the translation ϕSA

ϕSA(P S , δ) = P A if and only if

SChs(P A, c, m) = { (ch↓1, C(ch↓2)) | ch ∈ SChs(P S , c, m) }
∪ { (unlock, voidval) | ∃l.δ(l) = (c, , m, unlock, ,) }
∪ { (∅, this.unlock1(voidval); . . . ; this.unlockn(voidval); this)

| if m = δ↓2, and {unlock1 . . . unlockn} = {δ(l)↓3|δ(l)↓1 = c} }

AChs(P A, c) = { ({m′

1 . . . m′

n}), this.unlock(voidval); C(e)[m′

1 x/m1 x . . . m′

n x/mn x])
| l ∈ L, δ(l) = (c, , , unlock, {(m1, m

′

1) . . . (mn, m′

n)}, e) }

Sup(P A, c) = Sup(P S , c)

M(P A, c, m) =

M(P S , c, m) if M(P S , c, m) 6= Udf
void m(t) if ∃l.c v δ(l)↓1, (msh, m) ∈ δ(l)↓4,

M(P S , δ(l)↓1, msh) = msh(t)

void m(void) if ∃l.c v δ(l)↓1, m ∈ {δ(l)↓2, δ(l)↓3}

c m(void) if m = δ↓2

C(null) = null

C(this) = this

C(voidval) = voidval

C(m x) = m x

C(new c) = new c.δ↓2(voidval)
C(e1; e2) = C(e1); C(e2)
C(e1.m(e2)) = C(e1).m(C(e2))
C([spawn e]l) = this.lock(voidval); this.m′

1(m1 x); . . . ; this.m′

n(mn x)
where δ(l) = (c, lock, , {(m1, m

′

1) . . . (mn, m′

n)},)

Figure 6.1: Translation ϕSA : (LS × ∆) → LA

P S ` δ ⇐⇒ ∀({m1, . . . mn}, ech) ∈ SChs (P S , c,m), [spawn e]l ∈ ech .
let δ(l) = (c, lock, unlock, {(m1 ,m

′
1) . . . (mn,m′

n), (m,m′)}, e)
init = δ↓2

|{init, lock, unlock,m′
1 . . . m′

n,m′}| = n + 4 (all are distinct)
∀m′′ ∈ {init, lock, unlock,m′

1 . . . m′
n,m′} .

∀c′.M(P S , c′,m′′) = Udf
∀l′ . m′′ ∈ {δ(l′)↓2, δ(l

′)↓3} ∪ {m′′′|(,m′′′) ∈ δ(l′)↓4} =⇒ l = l′

∀l, c,m1 . . . mn,m, e . δ(l) = (c, , , {(m1,) . . . (mn,), (m,)}, e) =⇒
∃ech 3 [spawn e]l.({m1, . . . mn}, ech) ∈ SChs(P S , c,m)

This enforces the idea that the new method names are distinct from existing methods,
and each other, across the entire program (distinction within a class is not sufficient since
method names can still interfere due to the inheritance of methods).

It also ensures the set of method pairs is such that there is one pair for each method
in the enclosing chord, and the first element of the pair is that method. This is used like
a look-up table in the translation, so we know which method is “shadowing” each method
in the chord.

51

Chapter 6. LS is at most as expressive as LA

The value of δ used in the above example translation of a P S program was δ = ([l 7→
(c, lock, unlock, {(m1, m

′
1) . . . (mn, m′

n)}, e)], init).

6.1.3 Properties of the translation

These properties are not interesting results in the broader scope of this report, but are
presented here because they reflect the characteristics of this translation, and thus help us
understand it. If P A = ϕSA(P S, δ):

• ∀c . Q(P S, c) ⊇ Q(P A, c) No queues are lost over the translation, but many are added
because each the asynchronous chord that implements the spawn statement has a set
of new asynchronous methods. Also there is an asynchronous method unlock() as
part of the mutex that we use to guard each invocation of an asynchronous chord.

• From P A ` δ, we know that the definition of M(P S, c, m) is unambiguous, although
it is possible that none of the cases apply.

6.2 Preservation of structure (proof)

We first formally define the property of structure preservation for our programs P A and
P S where P A = ϕSA(P S, δ). We refer to section 3.1.2, where the contribution of [5] is put
into the context of our object-oriented formalisations. In order for the translation to be
structure-preserving, it must satisfy:

• The only construct in the source expressions of LS that is not present in LA is
spawn e. All the other constructs must not be changed in the translation. This
means that the method signatures must remain intact as otherwise it would not be
possible to prove well-formedness of P S since method calls must be left as they are.
spawn e statements must be replaced with program code that contains a single copy
of e but is otherwise independent of e.

We can see from the definition of C that the only constructs over which C is not
homomorphic are new c and spawn e. new c is an exception to this proof that was
justified in section 3.1.4. The spawn e construct is changed to a construct that
does not use e, but the e is used unchanged in the body of an asynchronous chord,
excepting the translation of argument variables that is justified in section 3.1.4. �

• Method signatures are common to LA and LS, so they must not be altered, although
we do allow addition of new methods.
∀c, m.M(P S, c, m) = msig ⇒ M(P A, c, m) = msig

From P S ` δ we know that the four cases for the definition of M(P S, c, m) in ϕAS

are exclusive, so when M(P A, c, m) = msig i.e. M(P A, c, m) 6= Udf , we know that
M(P S, c, m) = M(P A, c, m) = msig. �

• Synchronous chords are common to LS and LA so the synchronous chords in a class
must be preserved, aside from the recursion of the translation into their bodies. We

52

6.3. Preservation of well-formedness (proof)

do, however, allow new synchronous chords can be added:
∀c, m. ({m1 . . .mn}, e

S) ∈ SChs(P S, c, m) =⇒ ({m1 . . .mn}, C(eS))SChs(P A, c, m)

This can be seen from inspection of the definition of SChs(P A, c, m) in the transla-
tion. �

• The feature of classes is common to LA and LS, so the structure of classes must be
preserved, although we allow the addition of new classes:
∀c.Sup(P S, c) = c′ =⇒ Sup(P A, c) = c′

We can prove this by inspection of ϕSA, which actually has the stronger property
that no classes are added or removed. �

6.3 Preservation of well-formedness (proof)

We need to establish that the well-formedness of the translated source code is preserved
over translation, this is the notion of programness in [5]. Let P A = ϕSA(P S, δ). We must
show that ` P S =⇒ ` P A.

Lemma 6.3.1 If P A = ϕSA(P S, δ) then P S ` c �cl =⇒ P A ` c �cl

Proof:

P S ` c �cl =⇒ Sup(P S, c) 6= Udf ∨ c = Object (IsClass)

=⇒ Sup(P A, c) 6= Udf ∨ c = Object (Def ϕSA)
=⇒ P A ` c �cl (IsClass)

Lemma 6.3.2 Method type signatures are preserved over inheritance in the translated
program: If ` P S and P A = ϕSA(P S, δ) then
∀m.M(P A, Sup(P A, c), m) = tr m(ta) =⇒ ∃t′r, t

′
c . M(P A, c, m) = t′r m(t′a), t

′
r v tr, ta v

t′a.
Proof:

Let ` P S and M(P A, Sup(P A, c), m) = tr m(ta). We know from the definition of ϕSA

that there are four possibilities:

• M(P S, Sup(P A, c), m) = tr m(tc) 6= Udf and since Sup(P A, c) = Sup(P S, c) in

ϕSA we know M(P S, Sup(P S, c), m) = tr m(tc) 6= Udf in which case from P S ` c
we know that M(P S, c, m) = t′r m(t′c), t

′
r v tr, tc v t′c, and from the definition of ϕSA

we know that M(P A, c, m) = t′r m(t′c) �

• ∃l.Sup(P S, c) v δ(l)↓1, (msh, m) ∈ δ(l)↓4,M(P S, δ(l)↓1, msh) = msh(t) and
tr = void, tc = t. Let M(P A, c, m) = t′r m(t′a). Note that c v Sup(P S, c) and so
therefore the same case applies for c so t′r = trand t′c = tc �

• ∃l.Sup(P S, c) v δ(l)↓1, m ∈ {δ(l)↓2, δ(l)↓3} and we use the same argument as above
to show that the same type signature void m(void) is defined for M(P A, c, m). �

53

Chapter 6. LS is at most as expressive as LA

• m = δ↓2 in which case M(P A, Sup(P A, c), m) = Sup(c) m(void) and also
M(P A, c, m) = c m(void). Thus t′c = tc and since c v Sup(P S, c), t′r v tr. �

Lemma 6.3.3 Well-typedness of expressions is preserved over the translation:
If P A = ϕSA(P S, δ),
(m1 . . .mn, eS

ch) ∈ SChs(P S, c, m),
M(P S, c, m) = m(t0), M(P S, c, mi) = mi(ti) (for all i ∈ {1 . . . n}),
Γ = [m1 x 7→ t1 . . .mn x 7→ tn, m x 7→ t0, this 7→ c], and
e

S is a subterm of e
S
ch, then

P S, Γ ` e
S : t =⇒ P A, Γ ` C(eS) : t

Proof: Induction over the structure of derivations.

• STVar, STNull, STVoid: Trivial. �

• STNew: Note that C(new c) = new c.init(voidval) and that M(P A, c, init) =
c m(void), using STNew and STInv we can show that P A, Γ ` C(new c) : c. �

• STInv: Use M(P S, c, m) = msig 6= Udf =⇒ M(P A, c, m) = msig. �

• STSeq: Trivial. �

• STSub: Use Sup(P A, c) = Sup(P S, c) from definition of ϕSA. �

• STSpawn: We have to show that P A, Γ ` C([spawn eS
b]l) : void. Note that from the

premises, and P S ` δ we know that

δ(l) = (c, lock, , {(m1, m
′
1) . . . (mn, m′

n), (m, m′)}, eS
b)

and from the definition of ϕSA we note that

C([spawn e
S
b]l) = this.lock(voidval); this.m′

1(m1 x); . . . ; this.m′
n(mn x); this.m′(m x).

We must use STSeq to show this is typeable to void, and to this end it suffices
to show that all the method invocations are typeable to void. Using STInv with
STVar and M(P A, c, lock) = void lock(void) we know the first method satisfies. We
know from the premises that M(P S, c, m) = m(t0), M(P S, c, mi) = mi(ti) and
from the definition of ϕSA and δ(l) we therefore know M(P A, c, m′) = void m′(t0),
M(P A, c, m′

i) = void m′
i(ti). This means we can use STInv to type each of the

method invocations to voidin the sequential composition, and it follows that the
block is also void. �

Lemma 6.3.4 If σ : SrcExpr → SrcExpr is a substitution of argument variables, and
∀m x.Γ′(m x) = Γ(σ(m x)), then P, Γ ` e : t =⇒ P, Γ′ ` σ(e) : t

Proof: Induction over the structure of derivations.

Only interesting case is (STVar) where we case for the argument either being in the
substitution or not.

54

6.3. Preservation of well-formedness (proof)

Lemma 6.3.5 P S ` c =⇒ P A ` c
Proof:

P S ` c =⇒ P S ` Sup(P S, c) �cl (WFClass)
=⇒ P S ` Sup(P A, c) �cl (Def ϕAS)
=⇒ P A ` Sup(P A, c) �cl (Lemma 6.3.1)

P S ` c =⇒ ∀m.M(P A, Sup(P A, c), m) = tr m(ta)
⇒ ∃t′r, t

′
c . M(P A, c, m) = t′r m(t′a), t

′
r v tr, ta v t′a (Lemma 6.3.2)

For all methods m and synchronous chords ({m1 . . .mn}, e
A) ∈ SChs(P A, c, m) either

• ({m1 . . .mn}, e
S) ∈ SChs(P S, c, m) where eA = C(eS), in which case:

– ∀i ∈ {1 . . . n} . M(P S, c, mi) = void mi(ti) (WFClass) and by the definition
of ϕSA, M(P A, c, mi) = void mi(ti).

– M(P S, c, m) = t m(t0) (WFClass) and so M(P A, c, m) = t m(t0) by the same
argument.

– P S, Γ ` eS : t (where Γ = [m1 x 7→ t1 . . .mn x 7→ tn, m x 7→ t0, this 7→ c])
(WFClass) and so P A, Γ ` eA : t (lemma 6.3.2).

• n = 1, δ(l) = (c, m, m1, ,), eA = voidval in which case:

– By the definition of ϕSA, we know that M(P A, c, m1) = void m1(void) and
also M(P A, c, m) = void m(void).

– Using STVoid, P A, Γ ` eA : void
(where Γ = [m1 x 7→ voidm x 7→ void, this 7→ c]).

• m = init, n = 0 and eA = this.unlock1(voidval); . . . ; this.unlockn(voidval); this
where {unlock1 . . . unlockn} = {δ(l)↓3|∃l.δ(l)↓1 = c}

– We know from the definition of ϕSA that M(P A, c, m) = c m(void).

– We also know that each M(P A, c, unlocki) = void unlocki(void).

– We can now show that P S, [m x 7→ void, this 7→ c] ` eA : c because all the
unlocki calls can be typed to void, and thus their composition can be typed to
void, but the composition of the calls and thisreturns c.

For all asynchronous chords ({m′
1 . . . m′

n}, e
A) ∈ AChs(P A, c), there is only one case,

so we know that:

• δ(l) = (c, , unlock, {(m1, m
′
1) . . . (mn, m′

n)}, eS) and from the definition of ϕSA, that
leads to M(P A, c, m′

i) = void m′
i(ti) where M(P S, c, mi) = void mi(ti) and

M(P S, c, unlock) = void unlock(void).

• eA = this.unlock(voidval); Cσ(eS) where σ = [m′
1 x/m1 x . . . m′

n x/mn x].

55

Chapter 6. LS is at most as expressive as LA

• From P S ` δ we know that [spawn eS]l is a subterm of eS
ch where ({m2 . . . mn}, e

S
ch) ∈

SChs(P S, c, m1) and from (WFClass) we know that P S, Γ ` eS
ch : t (Γ = [m1 x 7→

t1 . . .mn x 7→ tn, this 7→ c]) for some type t, which implies P S, Γ ` [spawn eS]l : void
since all type rules require the subterms to be well-typed. It immediately follows that
P S, Γ ` eS : void.

• Using the above and lemma 6.3.3, we know that P A, Γ ` C(eS) : void but we need
to prove P A, σ(Γ) ` this.unlock(voidval); σ(C(eS)) : void. This follows using the
previously determined M(P S, c, unlock) = void unlock(void) and lemma 6.3.4.

The above is sufficient to prove P S ` c. �

Theorem 6.3.6 ` P S =⇒ ` P A.
Proof:
` P S =⇒ ∀c.Sup(P S, c) 6= Udf ⇒ P S ` c (WFProg)

=⇒ ∀c.Sup(P A, c) 6= Udf ⇒ P S ` c (Def ϕAS)

=⇒ ∀c.Sup(P A, c) 6= Udf ⇒ P A ` c (Lemma 6.3.5)
=⇒ ` P A (WFProg)

56

Chapter 7

LJ is at most as expressive as LS+

Up to this point, we have only considered formalisations that use chords for synchronisa-
tion. Now we define a language with monitors, LJ . This formalisation is so-called because
it is loosely based around Java. It has similar object-oriented features, and it associates a
mutex with each object. The constructs that implement condition variables are also based
around objects.

However, unlike Java, we do not have a synchronized construct, opting instead for
the “unstructured” synchronisation where an object ι has a pair of interactions, lock ι
and unlock ι. We use non-re-entrant locks. Unlike previous formalisations, LJ needs field
members that represent state. A complete comparison with Java, including justification
of these differences, is below.

In this chapter we show that LJ is at least as expressive as a new formalisation, LS+.
This new formalisation extends LS with fields and constructs for dealing with integers. It
is easier for us to encode LJ programs into a formalisation with a spawn construct, (rather
than asynchronous chords), because LJ also has a spawn construct.

We need not have extended LS with fields, since we know from [4] that the fields of LJ

could be represented with the queues of LS+. However, we prefer not to include this in our
translation because it would not prove anything new, and it distracts from the translation
of the synchronisation constructs which is the main aim of this chapter. The integers are
required because the implementation of condition variables with chords requires us to keep
a count of the number of waiting threads.

Essentially, we show that for each program design that uses the semantics of monitors,
there is an equivalent design that uses synchronous chords for the same effect.

7.1 Definition of LJ

For modelling monitors, we use a formalisation that I developed independently, but which
turned out to be very similar to that which is presented in [1]. A full comparison will be
given below.

We formalise LJ , an object-oriented language like LS but with monitors and con-
ventional methods instead of chords. The design of LJ is inspired by Java, but instead
of having a synchronized keyword, we instead use lock() and unlock() methods like
POSIX.

57

Chapter 7. LJ is at most as expressive as LS+

7.1.1 Comparison with the formalisation in [1]

The formalism in [1] is a far more complete model of the Java language, as it was intended
to not just model the synchronisation in Java, but also the language features that en-
able distributed applications, such as remote method invocation. If we consider only the
synchronisation semantics from the [1] formalism, there are still some differences:

• The [1] formalism models the “structured” synchronisation that is due to the Java
language’s synchronized keyword.

• The [1] formalism models re-entrant mutexes, by storing an integer counter within
the run-time state.

• At a technical level, the [1] formalism uses a number of pre-defined functions and
predicates in its rules which our simpler semantics avoids doing.

7.1.2 Comparison with real languages such as Java

The purpose of the formalism is to model the behaviour of monitors in real programming
languages, and aside from these features only the essential constructs are present in the
language. Even some aspects of monitors have been omitted, where it was decided that they
did not contribute the expressiveness of the synchronisation, or where their contribution
was obvious.

We model unstructured, non-re-entrant mutexes, although Java uses more sophisticated
mutexes, and POSIX supports a range of different kinds of mutexes. There are two reasons
for our simplification:

Firstly, the unstructured non-re-entrant mutex is naturally expressed by the semantics
of chords. Suppose we can prove that chords are as expressive as this kind of mutex.
We can then compare chords to other kinds of mutex by simply comparing unstructured
non-re-entrant mutexes to these other kinds of mutex. Comparing mutexes to other kinds
of mutexes is much simpler than comparing chords to other kinds of mutexes.

Secondly, a language that has structured synchronisation is as expressive as a language
that has unstructured synchronisation. To support this, we give the following formally
unsubstantiated, but still reasonable claims:

• Programs using the synchronized keyword can be converted to programs using
unstructured synchronisation by calling lock() and unlock() respectively before
and after the synchronized block.

• The functionality of lock() and unlock() methods can be implemented on top of
the synchronized keyword using condition variables to do the actual blocking of
threads as described in section 2.2.

Likewise, whether the language has re-entrant or non-re-entrant mutexes is a non-issue:
Firstly re-entrant mutexes can be implemented on top of non-re-entrant mutexes as seen in

58

7.1. Definition of LJ

section 2.2 (assuming some mechanism for identifying threads is present in the language1)
and this implementation can be used as a drop-in replacement for re-entrant mutexes (i.e.
without changing the program structure). Secondly, if a program is written using non-re-
entrant threads, and it does not deadlock (correct programs should not deadlock), then it
never attempts to lock a mutex when it already has that lock, and thus the program does
not distinguish the behaviour of re-entrant and non-re-entrant locks, thus re-entrant locks
are a drop-in replacement for non-re-entrant locks.

In none of our formalisations do we model any notion of thread identity. In Java this
is represented by instances and static members of the Thread object. In POSIX, there is a
structure for holding a thread identity, and functions such as pthread_self for identifying
the current thread. We feel these were not interesting enough to include in the formalism,
since they do not directly contribute to synchronisation itself, although they are required
for certain synchronisation algorithms, such as implementing re-entrant locks.

Both Java and POSIX have features for doing a wait() call with a timeout. This might
be required for certain programs but we feel it is not central to the issue of synchronisa-
tion. There are also mechanisms for interrupting threads that are in a waiting state, and
exceptions that are thrown in this event. Again, we do not model these as we feel they are
more specialist features and we want the semantics to be as simple as possible.

Java 1.5 and POSIX also give the programmer the ability to test the availability of a
mutex, i.e. a call like lock() that does not block, but instead returns a success / failure
status. We consider this a specialist feature.

Java 1.5’s Lock class allows the use of mutexes that are not associated with an object,
and likewise its Condition class allows multiple condition variables to be associated with
a single lock. We opt for the simpler technique from previous versions of Java, where each
object has a single mutex, and a single associated condition variable. Thus the constructs
for locking mutexes and interacting with condition variables can refer to an object, without
having to represent a separate notion of mutex and condition variable.

We believe decoupling mutexes from objects and condition variables from mutexes does
not add to the expressiveness of the language because a set of condition variables can be
represented with a single condition variable if a shared memory message is ‘sent’ to all the
waiting threads, telling it exactly which event has occurred. Likewise, it is always possible
to create a dummy object solely for the purpose of using its mutex.

7.1.3 Guided tour of LJ

Because there are many similarities between LJ and LS, we only explain the aspects of
the semantics which are different. Chapter 4 explains the technical nature of LA and LS,
and thus the same information applies here. The definition of LJ is given in figure 7.1,
figure 7.2, and figure 7.3.

1If we do not have some notion of thread identity, and being able to compare the current thread with
some recorded notion of thread identity, then we can pass information describing what locks we currently
have into each method, by including an extra argument, and then make run-time decisions about whether
or not to lock. This is necessary because the stack is the only area of storage which is owned by a single
thread. Having to do this would require massive changes to any program structure however, since this
information would need to be maintained, and added to all method calls. It is similar to the encoding of
exceptions with an augmented return value.

59

Chapter 7. LJ is at most as expressive as LS+

Programs

The first difference is that a program P J ∈ LJ does not have synchronous chords, instead
there is a mapping from methods identifiers to method bodies. Thus, each method can
have at most one body. The program tuple also contains a mapping that represents which
fields are defined in each class.

In LJ , we only need to consider fields of class type, since the only other type is void,
and void fields add nothing to the expressiveness of the language. Since their value is
always voidval, we can replace ι.f with voidval and ι.f := voidval with voidval.

Source expressions contain two new groups of constructs, constructs for synchronisation
(lock e, unlock e, wait e, notify e, and notifyAll e) and constructs for field lookup
and assignment (e.f and e.fL = e). LJ method bodies reference the single argument
variable with the constant x.

The synchronisation constructs lock e and unlock e represent the methods for locking
and unlocking a mutex. Every instance has its own mutex, the sub-expression resolves
to the address of the object that contains the mutex we want to control. The constructs
wait e, notify e, and notifyAll e, represent the public methods of class Object in
Java, that give the programmer access to the condition variables in the language. We
could have implemented these as methods in our formalisation, but it seemed clearer to
introduce them as language constructs, rather than creating special cases of the semantics
rule for method calls.

Execution

The run-time heap is similar to that in LS although instead of queues, we have fields.
Each field can store a single value, so we do not need a Idf → Multiset(V al) definition.
Run-time expressions incorporate the synchronisation constructs descried above, but also
locked ι e and waiting ι.

If a run-time expression, or thread, e contains locked ι e′ anywhere within its structure,
then that thread has the lock on the instance ι. I.e. if e = E1[locked ι e′] then e has the
lock on ι. This allows us to associate this information with an individual thread, which
would be difficult it do if we were, for example, to place the information in the heap.

The construct waiting ι does not feature in any so it will not get “stepped over” like
v in v; e. A thread e = E[waiting ι] is waiting on the mutex within the instance ι, as
described in section 2.2. This is only meaningful during run-time, so waiting was not
included in the source expressions of LJ .

The rule (Run) does not factor out the contexts from its sub-rules (New), (Inv), (Un-
lock), (Wait), (Fld), and (FldAss), as was the case in LA and LS, because the rules
(Unlock) and (Wait) need to use this information, as will be discussed below. Aside from
this detail, the (New) rule is the same as in LS except that it sets the field values to null

and doesn’t need to deal with the queues.

The rule (Inv) takes the place of (InvS) and (InvA). With no queues, and only one
argument per invocation, the rule is much simpler. There is also only one possible method
body. Method invocation does not affect the heap in LJ . The only operations that affect
the heap are field operations and object construction.

The execution of the lock ι statement should only proceed when no other threads

60

7.1. Definition of LJ

have the lock, as described in section 2.2. Thus there is only one semantics rule that
processes lock ι and that is (Lock). The rule only applies when no other threads have the
lock, which we implement by testing all the other threads and then separately testing the
thread that is actually executing lock ι. Because we require the thread which is doing the
locking to not have the lock, this is a non-re-entrant mutex. If no thread has the lock then
we represent the obtaining of the lock by placing locked ι at the root of the run-time
expression that models the thread. The rule (Unlock) simply removes this information
from the thread in question.

The rule (Wait) will only execute when it has the lock on the object that is being waited
upon, this is a necessary feature of condition variables and is mentioned in section 2.2.
Since a thread can only get the lock on an object by executing lock ι itself, this means
that if a thread attempts to execute wait ι without the lock then it will block forever.
This is like de-referencing a null pointer, and in Java an exception is raised (the Java API
documentation for Object explicitly instructs us to make sure we have the lock on an
object before calling wait()). Therefore valid programs never call wait ι without the lock
on that object. Aside from this detail, wait ι simply gives up the lock on the object and
enters the waiting state.

The rule (Notify) affects not only the thread calling notify ι (the expression returns
voidval) but also another arbitrary thread in the system that is waiting on the same
object. The rule also ensures that the thread calling notify ι has the lock on ι, although
it does not give the lock up like (Wait) does. When threads are woken up, they change
from E[waiting ι] to E[lock ι] to model the fact that waking threads must get back the
lock they gave up before proceeding.

The rule (NotifyNone) applies if there are no threads to notify, i.e. it complements
(Notify). The premise of the rule ensures that no threads are waiting, and reduces the
notify ι to voidval. Like the other notification rules, it will not apply unless the notifying
thread has the lock.

The rule (NotifyAll) is very similar to (Notify) but affects all the threads in the system
that are waiting on the object in question. Every thread is either left unchanged if they
were not waiting on ι (the “otherwise” case) or converted to E[lock ι] if they were waiting.

The field rules (Fld) and (FldAss) simply look up and re-write the function that rep-
resents the field values within the relevant instance.

Well-formedness

The only difference in the well-formedness relation of LJ when compared to LS is that we
have to ensure that fields are preserved exactly over inheritance. Instead of checking the
types of the chord bodies, we have to check method bodies instead, but the idea is the
same.

The types of the synchronisation constructs are all the same. All the constructs return
voidval in their own thread, and act on an object, so the type rule for all of them merely
ensures that the sub-expression is of some class type, and types the construct itself to
void. This makes sense, because they are triggering an external effect in other threads,
rather than computing with data.

The type rules for the field lookup and assignment operations use the mapping in the
program tuple to determine the type that a field’s contents should be.

61

Chapter 7. LJ is at most as expressive as LS+

Programs:

P J ∈ LJ = Idc × Idm → Methsig (Type signatures)
× Idc × Idm → SrcExpr (Method bodies)
× Idc × Idf → Idc (Fields)
× Idc → Idc (Superclass)

Methsig ::= t m(t)
t ∈ Types ::= c | void

e ∈ SrcExpr ::= null | voidval | this | x | new c | e.m(e)
| e ; e | spawn e | lock e | unlock e | wait e
| notify e | notifyAll e | e.f | e.f := e

m ∈ Idm c ∈ Idc f ∈ Idf

M(P J , c, m) = P J↓1(c, m) Meth(P J , c, m) = P J↓2(c, m)

F(P J , c) = P J↓3(c) Sup(P J , c) = P J↓4(c)

Runtime objects:

h ∈ Heap = N → (Idc × (Idf → V al))
e ∈ RunExpr ::= v | new c | e.m(e) | e ; e | spawn e

| lock e | unlock e | wait e | notify e
| notifyAll e | e.f | e.f := e
| locked ι e | waiting ι

v ∈ V al ::= null | voidval | ι
ι ∈ N (Addresses)

E[·] ::= E[·].m(e) | ι.m(E[·]) | E[·] ; e | v ; E[·]
| lock E[·] | unlock E[·] | wait E[·]
| notify E[·] | notifyAll E[·] | locked ι E[·]
| E[·].f | E[·].f := e | ι.f := E[·]

Figure 7.1: Syntax of LJ .

62

7.1. Definition of LJ

P J ` e, h e′, h′

P J ` e1 . . . en, e, h e1 . . . en, e′, h′
(Run)

h(ι) = Udf
P J ` E[new c], h E[ι], h[ι 7→ Jc‖λf.nullK]

(New)

h(ι) = Jc‖ K, e = Meth(P, c, m)
P J ` E[ι.m(v)], h E[e[v/x, ι/this]], h

(Inv)

∀i ∈ {1 . . . n}.@E′.ei = E′[locked ι]
@E′.E[lock ι] = E′[locked ι]

P J ` e1 . . . en, E[lock ι], h e1 . . . en, locked ι E[voidval], h
(Lock)

P J ` E1[locked ι E2[unlock ι]]], h E1[E2[voidval]], h
(Unlock)

P J ` E1[locked ι E2[wait ι]]], h E1[E2[waiting ι]], h
(Wait)

P J ` e1 . . . en, E1[waiting ι], E2[locked ι E3[notify ι]], h
e1 . . . en, E1[lock ι], E2[locked ι E3[voidval]], h

(Notify)

∀i ∈ {1 . . . n}.@E′.ei = E′[waiting ι]
P J ` e1 . . . en, E1[locked ι E2[notify ι]], h

e1 . . . en, E1[locked ι E2[voidval]], h
(NotifyNone)

∀i ∈ {1 . . . n}.e′i =

{

E′[lock ι] if ei = E′[waiting ι]
ei otherwise

P J ` e1 . . . en, E1[locked ι E2[notifyAll ι]], h
e′1 . . . e′n, E1[locked ι E2[voidval]], h

(NotifyAll)

P J ` e1 . . . en, E[spawn e], h e1 . . . en, E[voidval], e, h
(Spawn)

h(ι) = Jc‖fsK
P J ` E[ι.f], h E[fs(f)], h

(Fld)

h(ι) = Jc‖fsK
P J ` E[ι.f := v], h E[v], h[ι 7→ Jc‖fs[f 7→ v]K]

(FldAss)

Figure 7.2: Semantics of LJ .

63

Chapter 7. LJ is at most as expressive as LS+

Well-formedness:

∀c.Sup(P J , c) 6= Udf =⇒ P J ` c

` P J (WFProg)

P J ` Sup(P J , c) �cl

∀m.M(P J , Sup(P J , c), m) = tr m(ta) =⇒ ∃t′r v tr, t
′

a w ta.M(P J , c, m) = t′r m(t′a)

∀m, e = Meth(P J , c, m)
M(P J , c, m) = tr m(ta),
P J , [x 7→ ta, this 7→ c] ` e : tr

∀f.F(P J , c, f) = c′ =⇒ P J ` c′ �cl

∀f.F(P J , Sup(P J , c), f) = t =⇒ F(P J , c, f) = t

P J ` c

(WFClass)

Sup(P J , c) 6= Udf ∨ c = Object

P J ` c �cl
(IsClass)

Source type rules: (for (STLock), (STUnlock), (STNotify) and (STNotifyAll) see
(STWait))

v ∈ {this, x}
P J , Γ ` v : Γ(v)

(STVar)
P J ` c �cl

P J , Γ ` null : c
(STNull)

P J , Γ ` voidval : void
(STVoid)

P J ` c �cl

P J , Γ ` new c : c
(STNew)

P J , Γ ` e1 : c
P J , Γ ` e2 : t

M(P J , c, m) = tr m(t)
P J , Γ ` e1.m(e2) : tr

(STInv)
P, Γ ` e1 : t1
P, Γ ` e2 : t2

P, Γ ` e1 ; e2 : t2

(STSeq)

P J , Γ ` e : c
P J , Γ ` Sup(P J , c) = c′

P J , Γ ` e : c′
(STSub)

P J , Γ ` e : void
P J , Γ ` spawn e : void

(STSpawn)

P J , Γ ` e : c
P J , Γ ` wait e : void

(STWait)

P J , Γ ` e : c
F(P J , c, f) = t
P J , Γ ` e.f : t

(STFld)

P J , Γ ` e1 : c
F(P J , c, f) = t
P J , Γ ` e2 : t

P J , Γ ` e1.f := e2 : t

(STAss)

Figure 7.3: Rules for well-formed LJ programs.

64

7.2. Definition of LS+

7.1.4 Invariants of execution in LJ programs

These invariants illustrate the constraints on the state of an executing LJ program. The
first invariant is due to redundancies in the formalisation. The other two invariants are
due to the fundamental nature of synchronisation with monitors, and the constraints that
this imposes on the execution.

• Firstly, when a thread gets the lock on an object, locked . . . is placed at the
root of the run-time expression. This means that the following property on a state
s : Multiset(RunExpr) × Heap will always be maintained over execution:

∀e ∈ s↓1 . ∃n≥0, e′ . e = locked ι1 locked ι2 . . . locked ιn e′, @E . e′ = E[locked]

In words – the locked ι expressions will be together at the root of all the run-time
expressions that model threads. For each thread, ι1 . . . ιn is the set of objects on
which the thread has the lock.

• Secondly, a thread gives up the lock on an object when it is waiting, so we always
know the following property will be maintained over execution.

∀e ∈ s↓1 . e = E[waiting ι] =⇒ @E ′ . e = E ′[locked ι]

In words – If a thread is waiting on an object, it does not have the lock on that
object.

• Finally, the property of mutual exclusion is that no two threads have the lock on the
same object at any one time. Also, a thread can only have the lock once.

∀e1 ∈ s↓1, e2 ∈ s↓2, E1, E2 .
(e1 = E1[locked ι] ∧ e2 = E2[locked ι]) =⇒ (e1 = e2 ∧ E1 = E2)

In words – If two threads have the lock on the some object ι, then those two threads
are in fact the same thread, and also the lock is in the same place of the syntax tree
for both of them.

7.2 Definition of LS+

The language LS+ is an extension of LS that adds fields and integers. The fields do not
add any expressiveness to the language, as it was shown in [4] that there is an encoding
of fields within the system of queues used in the semantics of chords, and this encoding
happens to be structure preserving by our definition.

7.2.1 Guided tour of LS+

The additional language constructs are 0, inc e, dec e, and nonzero e e. These are the
constant integer zero, the predecessor and successor functions, and a kind of conditional
statement, respectively.

We extend the set of types with int, and note that we must now allow fields of both
class type (Idc) and int type. When making new objects with the (New) rule, we use
the Init (P S+, c, f) predicate to obtain the correct initial value for the fields, since we can
no-longer blindly use null.

65

Chapter 7. LJ is at most as expressive as LS+

The rules that act below the (Run) rule, i.e. (New), (InvA), (FldAss), (Inc), (Dec), and
(Nonzero), act on the whole runtime expression, including the context, which is different
from the way that the semantics rules of LS are designed. In LS we factored out the
context E[·] from all the “single thread” rules into the (Run) rule, since it was duplicated
in each case. With LJ however, this was no longer appropriate since some rules needed to
refer to the thread’s lock status, which was embedded within the context of the run-time
expression. Since LS+ is to be compared to LJ we make the style of the LS+ rules the
same as the style of LJ rules.

The (InvA), (InvS), and (Spawn) rules are otherwise taken straight from LS. The field
rules are standard, and the same as in LJ .

The rules (Inc) and (Dec) are straightforward, they define the usual successor and
predecessor functions on the integers. The definition of contexts allows the e in inc e to
be evaluated into an integer, and the (Inc) rule then adds one to this integer. It does not
change any state, like e.g. the ++ syntax in the C programming language.

The rule (Nonzero) is a conditional construct. Depending on its first argument, exe-
cuting nonzero e1 e2 will either execute e2 or not. If e1 is zero, the expression reduces
to voidval, thus discarding e2, otherwise it reduces to e2, and the subsequent steps of
execution will be the execution of e2. The typing rule for nonzero e1 e2 requires e2 to be
void, because the return value must be the same regardless of whether e1 was zero (and
thus the return value is voidval) or not.

66

7.2. Definition of LS+

Programs:

P S+ ∈ LS+ = Idc × Idm → Methsig (Type signatures)
× Idc × Idm → P(Chord) (Synchronous chords)
× Idc × Idf → (Idc ∪ {int}) (Fields)
× Idc → Idc (Superclass)

Methsig ::= t m(t)
t ∈ Types ::= c | void | int

Chord = P(Idm) × SrcExpr
e ∈ SrcExpr ::= null | voidval | this | m x | new c | e.m(e) | e ; e | spawn e

| e.f | e.f := e | 0 | inc e | dec e | nonzero e e
m ∈ Idm c ∈ Idc f ∈ Idf

M(P S+, c, m) = P S+↓1(c, m) SChs(P S+, c, m) = P S+↓2(c, m)

F(P S+, f) = P S+↓3(c, f) Sup(P S+, c) = P S+↓4(c)

Q(P S, c) =
⋃

{ ch↓1| ∃m.ch ∈ SChs(P S+, c, m) }

Runtime objects:

h ∈ Heap = N → (Idc × (Idm → Multiset(V al)) × (Idf → V al))
e ∈ RunExpr ::= v | new c | e.m(e) | e ; e | spawn e | e.f | e.f := e

inc e | dec e | nonzero e e
v ∈ V al ::= null | voidval | ι | z

ι ∈ N z ∈ Z
E[·] ::= E[·].m(e) | ι.m(E[·]) | E[·] ; e | v ; E[·]

| E[·].f | E[·].f := e | ι.f := E[·]
| nonzero E[·] e | inc E[·] | dec E[·]

Initial values of fields are defined as follows:

Init (P S+, c, f) =

{

null if F(P S+, c, f) ∈ Idc

0 if F(P S+, c, f) = int

Figure 7.4: Syntax of LS+.

67

Chapter 7. LJ is at most as expressive as LS+

P S+ ` e, h e′, h′

P S+ ` e1 . . . en, e, h e1 . . . en, e′, h′
(Run)

h(ι) = Udf
P S+ ` E[new c], h E[ι], h[ι 7→ Jc‖λm.∅‖λf.Init (P S+, c, f)K]

(New)

h(ι) = Jc‖qs‖fsK, m ∈ Q(P S+, c)
P S+ ` E[ι.m(v)], h E[voidval], h[ι 7→ Jc‖qs[m 7→ qs(m)] {v}]‖fsK]

(InvA)

h(ι) = Jc‖qs‖fsK, ({m1 . . .mn}, e) ∈ SChs(P S+, c, m)
∀i ∈ {1 . . . n}.qs(mi) = {vi}] qi

h′ = h[ι 7→ Jc‖qs[m1 7→ q1 . . . mn 7→ qn]‖fsK]
P S+ ` E[ι.m(v)], h E[e[v1/m1 x . . . vn/mn x, v/m x, ι/this]], h′

(InvS)

P S+ ` e1 . . . en, E[spawn e], h e1 . . . en, E[voidval], e, h
(Spawn)

h(ι) = Jc‖qs‖fsK
P S+ ` E[ι.f], h E[fs(f)], h

(Fld)

h(ι) = Jc‖qs‖fsK
P S+ ` E[ι.f := v], h E[v], h[ι 7→ Jc‖qs‖fs[f 7→ v]K]

(FldAss)

P S+ ` E[inc z], h E[z + 1], h
(Inc)

P S+ ` E[dec z], h E[z − 1], h
(Dec)

e′ =

{

voidval if z = 0

e otherwise

P S+ ` E[nonzero z e], h E[e′], h

(Nonzero)

Figure 7.5: Semantics of LS+.

68

7.2. Definition of LS+

Well-formedness:

∀c.Sup(P S+, c) 6= Udf =⇒ P S+ ` c

` P S+
(WFProg)

P S+ ` Sup(P S+, c) �cl

∀m.M(P S+, Sup(P S+, c), m) = tr m(ta) =⇒
∃t′r v tr, t

′

a w ta.M(P S+, c, m) = t′r m(t′a)

∀m, ({m1 . . . mn}, e) ∈ SChs(P S+, c, m).
∀i ∈ {1 . . . n}.Sig(P S+, c, mi) = void m(ti),
M(P S+, c, m) = t m(t0),
P S+, [m1 x 7→ t1 . . . mn x 7→ tn, m x 7→ t0, this 7→ c] ` e : t

∀f.F(P S+, c, f) = c′ =⇒ P S+ ` c′ �cl

∀f.F(P S+, Sup(P S+, c), f) = t =⇒ F(P S+, c, f) = t

P S+ ` c

(WFClass)

Sup(P S+, c) 6= Udf ∨ c = Object

P S+ ` c �cl
(IsClass)

Source type rules:

v ∈ {this, m x}
P S+, Γ ` v : Γ(v)

(STVar)
P S+ ` c �cl

P S+, Γ ` null : c
(STNull)

P S+, Γ ` voidval : void
(STVoid)

P S+ ` c �cl

P S+, Γ ` new c : c
(STNew)

P S+, Γ ` e1 : c
P S+, Γ ` e2 : t

M(P S+, c, m) = tr m(t)
P S+, Γ ` e1.m(e2) : tr

(STInv)
P, Γ ` e1 : t1
P, Γ ` e2 : t2

P, Γ ` e1 ; e2 : t2

(STSeq)

P S+, Γ ` e : c
P S+, Γ ` Sup(P S+, c) = c′

P S+, Γ ` e : c′
(STSub)

P S+, Γ ` e : void
P S+, Γ ` spawn e : void

(STSpawn)

P S+, Γ ` e : c
F(P S+, c, f) = t

P S+, Γ ` e.f : t
(STFld)

P S+, Γ ` e1 : c
F(P S+, c, f) = t
P S+, Γ ` e2 : t

P S+, Γ ` e1.f := e2 : t

(STAss)

P S+, Γ ` 0 : int
(STZero)

P S+, Γ ` e1 : int
P S+, Γ ` e2 : t

P S+, Γ ` nonzero e1 e2 : t
(STNonZero)

P S+, Γ ` e : int
P S+, Γ ` inc e : int

(STInc)
P S+, Γ ` e : int

P S+, Γ ` dec e : int
(STDec)

Figure 7.6: Rules for well-formed LS+ programs.

69

Chapter 7. LJ is at most as expressive as LS+

7.3 Definition of the translation ϕJS+

7.3.1 Example

Before giving the translation of general LJ programs into LS+ programs, we consider a
fairly general example that shows how chords implement the synchronisation primitives
of LJ , i.e. mutexes and condition variables. All classes in the LJ program will have their
method bodies converted by C : SrcExprJ → SrcExprS+, and will have the same set of
class members added.

class C {

void f(x) {

e

}

}

This is converted into the following code:

class C {

int counter;

void lock(void lock_x) & async unlock(void unlock_x) { }

void realWait(void realWait_x) & async realNotify(void realNotify_x) { }

void wait(void wait_x) {

this.counter := inc this.counter;

this.unlock(voidval);

this.realWait(voidval);

this.lock(voidval);

}

void notify(void notify_x) {

nonzero this.counter {

this.realNotify(voidval);

this.counter := dec this.counter;

voidval;

}

}

void notifyAll(void notifyAll_x) {

nonzero this.counter {

this.notify(voidval);

this.notifyAll(voidval);

}

}

void f(m_f) {

C(e)[m_f/x];

}

}

70

7.3. Definition of the translation ϕJS+

Of the added members, we consider the chord of realWait() and realNotify(), and the
field counter, to be “private” to the translation, because they are not directly accessed
by any of the code that was maintained from the LJ program, in this case C(e).

The new functions lock(), unlock(), wait(), notify(), and notifyAll() are meant
to have the same functionality as their counterparts in LJ , although here they are not lan-
guage constructs, they are methods whose bodies use the “private” members to synchronise
and hold state.

The translation C : SrcExprJ → SrcExprS+ converts the lock e, unlock e, wait e,
notify e, and notifyAll e to the appropriate method calls (e.g. e.lock (voidval)). It
is homomorphic over the rest of the constructs in LJ , since they are common to both
languages.

We now study the implementation of the new methods. Firstly, the behaviour of the
synchronous chord that is comprised of lock() and unlock() should be familiar to us.
This is the standard way to implement a mutex with chords, and we have used it many
times already in this report. There is never more than one message on the unlock() queue,
which is empty if and only if there is a thread in the critical section defined by the mutex.

The interesting part of this translation is not the mutexes, but how to implement the
condition variables in LJ , i.e. wait e, notify e and notifyAll e. We recall that the LJ

semantics do not define progress unless the thread that executes any of these constructs
has the lock on the associated object. Correct programs do not encounter this situation
at run-time.

After translation of all source code by C, these constructs are replaced with the method
calls in question, so we know that these methods are only called by threads with the lock.
only one thread can be executing any of these methods (on a specific object) at any one
time, with the exception that another thread can be part-way through the execution of
wait(). This means we do not have to worry about the fact that counter is a shared
memory variable, as it is protected by the mutex of the class.

The field variable counter is of int type, and keeps count on the number of threads
waiting for notification. It is used so that notify() can avoid emitting the realNotify()

message when there are no threads to wake up (so no notifications are queued), and also
so that notifyAll() can emit the right number of messages to wake up all the sleeping
threads.

The function wait() is quite simple. Its behaviour is the same regardless of the state
of the object, it simply increments the counter, gives up its lock of the object, and waits
for a realNotify() message to occur. When this happens, it re-acquires the lock (as the
semantics of LJ require) and returns.

The function notify() does nothing if no threads are currently waiting, i.e. if counter
is zero. If counter is non-zero, there are that many threads blocked in a call to the syn-
chronous method realWait(), i.e. they are unable to progress from their run-time expres-
sion of E[ι.realWait (voidval)]. So if counter is non-zero, then a single realNotify()

message is emitted, and the function returns. The realNotify() message is queued, and
can either join immediately with one of the a threads that is blocked, or join at some
later stage, after some unrelated steps of execution in threads that are not waiting. The
moment that the join occurs is the moment that the wakeup happens, all the steps leading
up to this event are preparation. (The voidval in the function is there so that the body

71

Chapter 7. LJ is at most as expressive as LS+

of the conditional types to void, otherwise the code is not well-typed.)

The function notifyAll() also does nothing if no threads are currently waiting, i.e. if
counter is zero. It uses recursion to repeatedly execute notify() until counter is zero.
I.e., it calls notify() once for every thread that was waiting, thus notifying them all, and
filling the realNotify() queue with enough messages for them all to join. No threads can
enter a waiting state while this is happening because of the mutex that must be held when
notifyAll() is called.

7.3.2 Translation

The encoding is given in figure 7.7. Because the encoding can translate into a range
of equivalent programs, since we can choose almost any name we like for the new class
members, we collect this flexibility into a single “decision” function δ and specify this as
an argument to ϕJS+.

δ : ∆ = Idm × Idm × Idm × Idm × Idm × Idm × Idm × Idm × Idf

For all classes, δ = (lock, unlock, wait, notify, notifyAll, realNotify, realWait, init,
counter) tells us the names of all the methods added to the class to implement the semantics
of LJ ’s mutexes and condition variables. In previous translations, the names of new
methods have been chosen for each class specifically, but now we use the same name
for all classes. Since the methods do the same thing and have the same type signatures
across all the classes, we do not have any clashes between classes due to inheritance.

The result of ϕJS+(P J , δ) is only well-defined when δ is well-formed, i.e. that P J ` δ
as defined below:

P S ` δ ⇐⇒ δ = (lock, unlock, wait, notify, notifyAll, realNotify, realWait, init, counter)
∀c . F(P J , c, counter) = Udf
let S = {lock, unlock, wait, notify, notifyAll, realNotify, realWait, init}
|S| = 8 (all are distinct)
∀c, m ∈ S . M(P J , c, m) = Udf

This ensures that counter does not conflict with any existing fields, and that all the new
method names are distinct, and none conflict with any existing methods in any of the
classes in the original program.

7.3.3 Properties of the translation

It can be immediately seen from the definition, that if P S+ = ϕJS+(P J , δ):

• ∀c, m.|SChs(P S+, c, m)| = 1 We have no use for this kind of non-determinism when
implementing monitors with chords.

• ∀c.Q(P S+, c) = {δ2, δ7} The only queues we use are for implementing the behaviour
of a mutex and the blocking and releasing of threads.

72

7.3. Definition of the translation ϕJS+

ϕJS+(P J , δ) = P S+ if and only if

SChs(P S+, c, m) =

{(∅, C(e)[m x/x])} if Meth(P J , c, m) = e

{({δ↓2}, voidval)} if m = δ↓1

{({δ↓7}, voidval)} if m = δ↓6

{ (∅,this.δ↓9 := inc this.δ↓9;

this.δ↓2(voidval);

this.δ↓6(voidval);

this.δ↓1(voidval)) } if m = δ↓3

{ (∅,nonzero this.δ↓9 (

this.δ↓7(voidval);

this.δ↓9 := dec this.δ↓9;

voidval

)) } if m = δ↓4

{ (∅,nonzero this.δ↓9 (

this.δ↓4(voidval);

this.m(voidval)

)) } if m = δ↓5

{(∅, this.δ↓2(voidval); this)} if m = δ↓8

M(P S+, c, m) =

M(P J , c, m) if M(P J , c, m) 6= Udf
void m(void) if ∃i ∈ {1 . . . 7}.m = δ↓i

c m(void) if m = δ↓8

F(P S+, c, f) =

{

F(P J , c, f) if F(P J , c, f) 6= Udf
int if f = δ↓9

Sup(P S+, c) = Sup(P J , c)

C(null) = null

C(voidval) = voidval

C(this) = this

C(x) = x
C(new c) = new c.δ↓8(voidval)
C(e1.m(e2)) = C(e1).m(C(e2))
C(e1; e2) = C(e1); C(e2)
C(spawn e) = spawn C(e)
C(e.f) = C(e).f
C(e1.f := e2) = C(e1).f := C(e2)
C(lock e) = C(e).δ↓1(voidval)
C(unlock e) = C(e).δ↓2(voidval)
C(wait e) = C(e).δ↓3(voidval)
C(notify e) = C(e).δ↓4(voidval)
C(notifyAll e) = C(e).δ↓5(voidval)

Figure 7.7: Translation ϕJS+ : (LJ × ∆) → LS+

73

Chapter 7. LJ is at most as expressive as LS+

7.4 Preservation of structure (proof)

We first formally define the property of structure preservation for our programs P J and
P S+ where P S+ = ϕJS+(P J , δ). We refer to section 3.1.2, where the contribution of [5] is
put into the context of our object-oriented formalisations. In order for the translation to
be structure-preserving, it must satisfy:

• The only constructs in the source expressions of LJ that are not present in LS+ are
the five constructs that implement mutual exclusion. C must be homomorphic over
all the other constructs. This means that the method signatures must remain intact
as otherwise it would not be possible to prove well-formedness of P S since C must
be homomorphic over method calls.

We can see from the definition of C that the only constructs over which C is not
homomorphic are new c and the five constructs which represent the monitors. For
new c we have special exception, as justified in section 3.1.4. The result of C when
applied to the five monitor constructs is a simple macro translation where the sub-
expression is used exactly once.

• Method signatures are common to LJ and LS+, so they must not be altered, although
we do allow the addition of new methods.
∀c, m.M(P J , c, m) = msig ⇒ M(P S+, c, m) = msig

From P J ` δ we know that the three cases for the definition of M(P S+, c, m) in ϕJS+

are exclusive, so when M(P J , c, m) = msig i.e. M(P J , c, m) 6= Udf , we know that
M(P S+, c, m) = M(P J , c, m) = msig. �

• Methods are present in LJ but not in LS+, so the translation must replace them with
some other code, while preserving the method bodies aside from calling C on them.

The first case of SChs(P S+, c, m) in ϕJS+ forms a synchronous chord with C(e)
as a body, so ∀c, m, e.Meth(P J , c, m) = e =⇒ (∅, C(e)[m x/x]) ∈ SChs(P S+, c, m),
which satisfies the condition considering the specific exemption of argument renaming
from the requirements, as justified in section 3.1.4. �

• Fields are a feature of LJ and LS+ so like method signatures, we must show they are
preserved over the translation. ∀c, f.F(P J , c, f) = c′ ⇒ F(P S+, c, f) = c′

From P J ` δ we know that the two cases for the definition of F(P S+, c, f) in ϕJS+

are exclusive, so when F(P J , c, f) = c′ i.e. F(P J , c, f) 6= Udf , we know that
F(P S+, c, f) = F(P J, c, f) = c′. �

• The feature of classes is common to LJ and LS+, so the structure of classes must be
preserved, although we allow the addition of new classes:
∀c.Sup(P J , c) = c′ =⇒ Sup(P S+, c) = c′

We can prove this by inspection of ϕJS+, which actually has the stronger property
that no classes are added or removed. �

74

7.5. Preservation of well-formedness (proof)

7.5 Preservation of well-formedness (proof)

We need to establish that the well-formedness of a program is preserved when the pro-
gram is translated, this is the notion of preservation of programness in [5]. Let P S+ =
ϕJS+(P J , δ). We must show that ` P J =⇒ ` P S+.

Lemma 7.5.1 If P S+ = ϕJS+(P J , δ) then P J ` c �cl =⇒ P S+ ` c �cl

Proof:

P J ` c �cl =⇒ Sup(P J , c) 6= Udf ∨ c = Object (IsClass)

=⇒ Sup(P S+, c) 6= Udf ∨ c = Object (Def ϕJS+)
=⇒ P S+ ` c �cl (IsClass)

Lemma 7.5.2 Method type signatures are preserved over inheritance in the translated
program: If ` P J and P S+ = ϕJS+(P J , δ) then
∀m.M(P S+, Sup(P S+, c), m) = tr m(ta) =⇒ ∃t′r v tr, t

′
a w ta . M(P S+, c, m) = t′r m(t′a).

Proof:

Let ` P J and M(P S+, Sup(P S+, c), m) = tr m(ta). We know from the definition of
ϕJS+ that there are three possibilities:

• M(P J , Sup(P J , c), m) = tr m(ta) 6= Udf in which case from P J ` c we know that
∃t′r v tr, t

′
a w ta.M(P J , c, m) = t′r m(t′a), and from the definition of ϕJS+ we know

that M(P S+, c, m) = t′r m(t′a) �

• ∃i ∈ {1 . . . 7}.m = δ↓i, in which case tr = ta = voidval, and also
M(P S+, c, m) = voidval m(voidval) because δ↓i is independent of class. Clearly
voidval v voidval and voidval w voidval. �

• m = δ↓8 in which case tr = Sup(P S+, c) and ta = void. We also know that
M(P S+, c, m) = c m(voidval) since δ↓8 is independent of class. Clearly
Sup(P S+, c) v c and voidval w voidval. �

Lemma 7.5.3 Well-typedness of expressions is preserved over the translation:
If P S+ = ϕJS+(P J , δ),
(m1 . . .mn, eS

ch) = Meth(P S, c, m),
M(P S, c, m) = m(t0), M(P S, c, mi) = mi(ti) (for all i ∈ {1 . . . n}),
Γ = [m1 x 7→ t1 . . .mn x 7→ tn, m x 7→ t0, this 7→ c], and
e

S is a subterm of e
S
ch, then

P J , Γ ` e
J : t =⇒ P S+, Γ ` C(eJ) : t

Proof: Induction over the structure of derivations.

• STVar, STVoid: Trivial. �

75

Chapter 7. LJ is at most as expressive as LS+

• STNull, use lemma 7.5.1. �

• STNew: Note that C(new c) = new c.δ↓8(voidval) and that M(P S+, c, ↓8) =
c m(void), using STNew and STInv, P S+, Γ ` C(new c) : c. �

• STInv: From the definition of ϕJS+,
M(P J , c, m) = t m(ta) 6= Udf =⇒ M(P S+, c, m) = t m(ta). Using this and the
induction hypothesis we can show P S+, Γ ` C(e1.m(e2)) : t. �

• STSeq: Use that C(e1; e2) = C(e1); C(e2), and the induction hypothesis. �

• STSub: Use Sup(P S+, c) = Sup(P J , c) from definition of ϕJS+, and the induction
hypothesis. �

• STSpawn: Using that C(spawn e) = spawn C(e) and the induction hypothesis,
trivial. �

• STWait: Using that C(wait e) = C(e).δ↓3(voidval) and ∀c.M(P S+, c, δ↓3) =
void δ↓3(void), we know that P S+, Γ ` C(wait e) : void. �

• STLock, STUnlock, STNotify, STNotifyAll: Same as STWait. �

Lemma 7.5.4 If P, Γ ` e : t and Γ′(v[m x/x]) = Γ(v) for v ∈ {x, this}, then P, Γ′ `
e[m x/x] : t

Proof: Induction over the structure of derivations.

• Only interesting case is (STVar). We know from the the rule e = v ∈ {x, this}, and
from the premise of the lemma Γ′(v[m x/x]) = Γ(v) = t so P, Γ′ ` v[m x/x] : t. �

Lemma 7.5.5 P J ` c =⇒ P S+ ` c
Proof:

P J ` c =⇒ P J ` Sup(P J , c) �cl (WFClass)
=⇒ P J ` Sup(P S+, c) �cl (Def ϕJS+)
=⇒ P S+ ` Sup(P S+, c) �cl (Lemma 7.5.1)

P J ` c =⇒ ∀m.M(P S+, Sup(P S+, c), m) = tr m(ta)
⇒ ∃t′r v tr, t

′
a w ta . M(P S+, c, m) = t′r m(t′a) (Lemma 7.5.2)

For all methods m and synchronous chords ({m1 . . .mn}, e
S+) ∈ SChs(P S+, c, m) either

• Meth(P J , c, m) = eJ 6= Udf where eS+ = C(eJ)[m x/x], in which case:

– The value of n = 0

76

7.5. Preservation of well-formedness (proof)

– M(P J , c, m) = tr m(ta) (P J ` c) and so M(P S+, c, m) = tr m(ta) by the
definition of ϕJS+.

– P J , Γ ` eJ : tr (where Γ = [x 7→ ta, this 7→ c]) (WFClass) and so
P S+, Γ′ ` eS+ : tr where Γ′ = [m x 7→ ta, this 7→ c] (using lemma 7.5.2 and
lemma 7.5.4). �

• n = 1, m = δ↓1, m1 = δ↓2, (also applies for the other case where m = δ↓6,
m1 = δ↓7) and eS+ = voidval, in which case:

– By the definition of ϕJS+, we know that M(P S+, c, m1) = void m1(void) and
also M(P S+, c, m) = void m(void).

– Using STVoid, P S+, Γ ` eA : void (where
Γ = [m1 x 7→ void, m x 7→ void, this 7→ c]). �

• n = 0, m = δ↓3, and eS+ = this.δ↓9 := inc this.δ↓9;
this.δ↓2(voidval); this.δ↓6(voidval); this.δ↓1(voidval), in which case:

– By the definition of ϕJS+, we know that M(P S+, c, m) = void m(void), and
∀i ∈ {2, 6, 1}.M(P S+, c, δ↓i) = void δ↓i(void). We also know that
F(P S+, c, δ↓9) = int.

– Let Γ = [m x 7→ void, this 7→ c]. Using (STFld) and (STVar),
P S+, Γ ` this.δ↓9 : int. This means that P S+, Γ ` inc this.δ↓9 : int, and
thus P S+, Γ ` this.δ↓9 := inc this.δ↓9 : int. It is trivial to type all the
method calls to void, and therefore the composition can also be typed:
P S+, Γ ` eS+ : void �

• n = 0, m = δ↓4, and
eS+ = nonzero this.δ↓9 (this.δ↓7(voidval); this.δ↓9 := dec this.δ↓9; voidval),
in which case:

– By the definition of ϕJS+, we know that M(P S+, c, m) = void m(void), and
M(P S+, c, δ↓7) = void δ↓7(void). We also know that F(P S+, c, δ↓9) = int.

– Let Γ = [m x 7→ void, this 7→ c]. Using (STFld) and (STVar),
P S+, Γ ` this.δ↓9 : int. This means that P S+, Γ ` dec this.δ↓9 : int, and
thus P S+, Γ ` this.δ↓9 := dec this.δ↓9 : int. It is trivial to type the method
call to void, and the voidval types to void, so the composition of these three
statements is typed to void. We can therefore type the whole body:
P S+, Γ ` eS+ : void �

• n = 0, m = δ↓5, and
eS+ = nonzero this.δ↓9 (this.δ↓4(voidval); this.m(voidval)), in which case:

– By the definition of ϕJS+, we know that M(P S+, c, m) = void m(void), and
M(P S+, c, δ↓4) = void δ↓4(void). We also know that F(P S+, c, δ↓9) = int.

77

Chapter 7. LJ is at most as expressive as LS+

– Let Γ = [m x 7→ void, this 7→ c]. Using (STFld) and (STVar),
P S+, Γ ` this.δ↓9 : int. We now type the second sub-expression of the
nonzero block. It is trivial to type the method calls to void, and thus the
composition of the two statements is typed to void. We can therefore type the
whole body: P S+, Γ ` eS+ : void �

• m = δ↓8, n = 0 and eS+ = this.δ↓2(voidval); this

– We know from the definition of ϕJS+ that M(P S+, c, m) = c m(void).

– We also know that M(P S+, c, δ↓2) = void δ↓2(void).

– We can now show that P S+, [m x 7→ void, this 7→ c] ` eS+ : c because the call
to this.δ↓2(voidval) can be typed to void, and this is trivially typed to c,
thus the composition can be typed to c.

For all fields f such that F(P S+, c, f) = c′, we know from the definition of ϕJS+ that
F(P J , c, f) = c′. From P J ` c we therefore know that P J ` c′ �cl and from lemma 7.5.1
we know that P S+ ` c′ �cl.

For all fields f such that F(P S+, Sup(P S+, c), f) = t we know from the definition of
ϕJS+ that there are two possibilities:

• F(P J , Sup(P S+, c), f) = t and thus F(P J, Sup(P J , c), f) = t, in which case we
know from P J ` Sup(P J , c) that F(P J , c) = t and thus by the definition of ϕJS+:
F(P S+, c, f) = t. �

• f = δ↓9 in which case t = int, and because δ is independent of class,
F(P S+, c, f) = int as well. �

The above is sufficient to prove P S+ ` c. �

Theorem 7.5.6 ` P J =⇒ ` P S+.
Proof:
` P J =⇒ ∀c.Sup(P J , c) 6= Udf ⇒ P J ` c (WFProg)

=⇒ ∀c.Sup(P S+, c) 6= Udf ⇒ P J ` c (Def ϕJS+)

=⇒ ∀c.Sup(P S+, c) 6= Udf ⇒ P S+ ` c (Lemma 7.5.5)
=⇒ ` P S+ (WFProg)

78

Chapter 8

LS is at most as expressive as LJ∗

This chapter concerns the relation between chords and monitors, but in the opposite
direction to chapter 7, i.e. we implement the synchronisation of chords with monitors. We
define a translation from the language LS into a new language LJ∗.

The language LJ∗ is a version of LJ with features that define special queue fields and
operations to act on them. Java does not have these features, but can encode them as
will be shown below. Thus they would add nothing to the expressiveness of Java. The
presence of queues in the formalisation means LJ∗ does not need fields, as demonstrated
in [4]. Thus LJ∗ is not strictly an extension of LJ like LS+ was of LS. Another way of
looking at this is – because we are translating from a language that does not have fields,
and the translation does not use fields for its own mechanisms, we do not need fields in
LJ∗.

It does not seem to be possible to show that LJ∗ and LJ are equivalent, since to encode
the queues in LJ requires some way of specifying non-determinism in programs which
is not present in LJ (but is present in Java because Java has a pseudo-random number
generator). There is non-determinism in LJ in the way that threads are interleaved, but
it does not seem likely that this is “powerful enough” to express the non-determinism of
queue selection in an elegant way.

8.1 Definition of LJ∗

We formalise LJ∗, an object-oriented language with monitors, like LJ but without fields,
and with features added to represent a “queue” library. We motivate and explain the
design of the formalism, and give a Java implementation of the features that model the
“queue” library.

8.1.1 Method arguments

The encoding to LJ∗ needs multiple arguments to method calls. There is no obvious encod-
ing of multiple arguments (within a concurrent formalisation) when we have conventional
methods as opposed to chords. In the sequential world, we can use fields as a substitute
for multiple argument passing, but since fields are a shared state in the concurrent world,
this is no longer feasible since different threads will interfere with each other.

79

Chapter 8. LS is at most as expressive as LJ∗

In LS and LA, a chord body can access a set of arguments, since every chord has a
set of associated methods, and each method has its own argument. These arguments were
named after their respective methods, and identified with the lexicon m x. Since we now
have a single method per method body, but each method now can have multiple arguments,
we consider the arguments to be an ordered sequence, and elements of this sequence are
referenced with an index number. The sequence of arguments is therefore x1 . . . xn.

8.1.2 Features in LJ∗ and not in real languages

The semantics of chords includes queues and various operations on queues, some of which
are have non-deterministic semantics. Unfortunately such things cannot be trivially rep-
resented with the abstract formalisations in which we work (because of the lack of many
language features that are designed for defining such things), so we augment the formali-
sation with language features to do precisely what is required to implement chords.

We justify this by claiming that a further translation into a more realistic language
could be made by implementing these artificial features with conventional code. This
claim will be backed up later with the code listing of such an implementation.

The essential issue here is not how queues can be implemented, but how the synchro-
nisation behaviour can be uncoupled from the method invocations and implemented with
method bodies and locks. The decision to encode the queue as an abstract data type
within the language itself, should not be seen as a failure or omission, but as a technique
for focussing on the important issues and keeping the encoding as simple as possible. The
features added to represent a queue implementation are as follows:

• In the definition of programs, it is specified for each class, what queues will be
available in that class. The queues are identified using a method name, e.g. m. Any
queue m in a class must have a corresponding method m, the type of element that
exists in that queue is the same as the type of the argument of that method.

• In the definition of an object on the heap, there is a structure for holding a multiset
of values for each queue. This is identical to the representation of queues in LA and
LS.

• In source and run-time expressions, there are three extra constructs for operating on
the queues in each object:

– push x this m is defined to add the value of the argument x to queue m of
this. This emulates the queue behaviour used during asynchronous method
call. We could have defined arbitrary expressions e1, e2 instead of using x and
this. However we feel that since we only need these specific atoms to do the
translation, and if we were to allow arbitrary expressions then we would need a
larger definition of contexts to define the reduction of these expressions before
the execution of push v ι m.

– pop this m is defined to remove an arbitrary (so this is a source of non-
determinism) element from the queue m in this. The expression reduces to
the value taken from the queue.

80

8.1. Definition of LJ∗

– ndcond this (m1
1 . . .m1

n1 , e1) . . . (mk
1 . . .mk

nk , e
k)(e) is much more complicated.

It is an expression which reduces to one of the e1 . . . ek or e sub-expressions
within it, depending on the state of the queues in the object this. Each pair
(mi

1 . . .mi
ni , ei) contains a set of queues and an expression. The pair is “suit-

able” if none of the referenced queues are empty. If no pairs are suitable, the
expression evaluates to the “default” sub-expression e. Otherwise, the expres-
sion evaluates to the sub-expression in one of the suitable pairs, the choice of
which pair, when more than one is suitable, is arbitrary (another source of non-
determinism). This is meant to emulate the semantics of chord body invocation.
The token ndcond stands for “non-deterministic condition”.

There is additionally non-determinism in LS (and LA) if a method is both a synchronous
part of a chord, and an asynchronous part of a chord. Invocation of such a method can
either choose the synchronous invocation rule if the state of the queues is appropriate, or the
asynchronous rule and append its argument to the associated queue. When representing
this in LJ∗ we have trouble defining a method that can have two possible behaviours. To
remedy this, we unrealistically specify a set of method bodies for each method, and allow
one to be arbitrarily chosen during invocation. Such a feature can be implemented in
conventional Java using an if statement and the pseudo-random number generator, so the
addition of this unrealistic feature does not affect our results.

8.1.3 Implementing the queue operations in Java

By giving a structure preserving translation from the LJ∗ constructs that model queue
operations to Java, we show that LJ∗ is no more expressive than Java. We can consider two
possible implementations of the LJ∗ constructs in question – either a “fair” implementation
where all the possible behaviours occur equally frequently, or an “unfair” implementation
where this is not so. Writing a fair implementation is harder than an unfair implementation
(and the extra logic required makes it less efficient), but certain algorithms might benefit
from fairness, so we give both here.

To start with, we need to implement a Java queue class. This is an abstract data
type that encapsulates the logic required to define an unbounded, unordered buffer of
objects. Note that it is best to use generics here, otherwise the queue will only be able
to pop objects of Object type, and this would mean we would need to upcast them, e.g.
((C) q.pop()).

class Queue<T> {

private List list = new LinkedList();

public synchronized T push(T x) {

list.append(x);

}

public synchronized T pop(T x) {

return (T)list.remove(0);

}

81

Chapter 8. LS is at most as expressive as LJ∗

public synchronized boolean nonEmpty() {

return list.size()!=0;

}

}

class FairQueue<T> {

private List list = new LinkedList();

public synchronized T push(T x) {

list.append(x);

}

public synchronized T pop(T x) {

return (T)list.remove((int)(Math.random()*list.size()));

}

public synchronized boolean nonEmpty() {

return list.size()!=0;

}

}

Using this class, we can create a queue object as a field for each method that needs one
in a class. We can name these fields after the method that they are associated with in the
LJ∗ program, because a field can have the same name as a method in a Java class. Thus
we can translate push x this m into this.m.push(x) and pop this m into this.m.pop().

The translation of the ndcond this (m1
1 . . .m1

n1 , e1) . . . (mk
1 . . .mk

nk , e
k)(e) statement is

much harder. First we consider the unfair version:

if (this.m1
1.nonEmpty() && . . . && this.m1

n1 .nonEmpty()) {
e1;

} else if (this.m2
1.nonEmpty() && . . . && this.m2

n2 .nonEmpty()) {
e2;

} else if . . .
...

} else if (this.mk
1 .nonEmpty() && . . . && this.mk

nk .nonEmpty()) {
ek;

} else {
e;

}

The above code will choose the first suitable pair that it sees, and execute e, the default
expression, if there are none available.

The fair version is much more complicated because we cannot choose any particular
order when we test the queues. One method is to use the pseudo-random number generator
(which has uniform distribution) to get an offset between 1 and k. We can then scan the
pairs starting at this offset and “wrapping” when we get to the end, i.e. we can scan at
index ((i + offset) % k) + 1 where 0 ≤ i < k. In the following code we use a switch
statement to achieve this:

82

8.1. Definition of LJ∗

int offset = (int)(Math.random() ∗ k);
for (int i = 0 ; i < k ; i + +) {

switch (((i + offset) % k) + 1) {
case 1 :

if (this.m1
1.nonEmpty() && . . . && this.m1

n1 .nonEmpty()) {
e1;
goto done :

} break;
...
case k :

if (this.mk
1 .nonEmpty() && . . . && this.mk

nk .nonEmpty()) {
ek;
goto done :

} break;
}

}
e;
done :

The general approach is rather complicated. It would be better for the programmer to
tailor the algorithm for the specific case at hand. The expression being encoded may
have an empty set of methods for some of the pairs, or only one pair, and thus be much
easier to encode. We could represent this idea formally by defining behaviour-preserving
optimisation rules that remove redundant code from applications of the algorithm above,
but efficient implementations are not the subject of this report.

8.1.4 Guided tour of LJ∗

The formalism LJ∗ is very similar to LJ , which was described in chapter 7, so we only
consider the differences here.

Method signatures in LJ∗ specify the type for each of the sequence of argument vari-
ables, so for example t1 is the type of x1. In the source expressions, method calls now have
a sequence of argument parameters.

Instead of having a single body for each method, like LJ , in LJ∗ we have a set of
methods.

The program tuple does not have fields, but instead has a mapping from class identi-
fiers to sets of method identifiers. This represents the subset of class methods that have
associated queues. We can tell the type of the values that will be stored in these queues,
because it is always the same as the type of the single argument of the method. Thus a
class has a set of associated method members, and a subset of this will also have queues
attached. Operations on these queues refer to them by the identifier of the method to
which they are attached.

The source expressions contain the constructs push x this m, pop this m, and
ndcond this . . ., that are operations on the queues contained within an object.

The heap represents queues in the same way that the chorded formalisations do. The
run-time expressions include the queue operations, but here they have concrete values
rather than variable identifiers. When source expressions are converted into run-time

83

Chapter 8. LS is at most as expressive as LJ∗

expressions during method invocation, the substitution changes the this into some ι, and
the argument x into some value.

Of the semantics rules that LJ∗ shares with LJ , most remain unchanged. Object
construction (New) is different because there are no fields, and instead we are initialising a
mapping to empty queues, however this is the same as in LS and LA. Method invocation
(Inv) is different because not only does it choose an arbitrary body to invoke (i.e. there
is non-determinism), but it also has to substitute the sequence of argument parameters,
rather than just a single argument.

The main change is the new rules (Push), (Pop), and (NdCond). The mechanisms
within (Push) and (Pop) are borrowed from the chord semantics of LS and LA, they
just literally look up the queues representation from the appropriate instance, and either
append or remove an element from the appropriate queue. The rule (Pop) returns the
value it pops, whereas (Push) returns voidval.

The translation to LJ∗ never attempts to pop an element from an empty queue, we can
be sure of this because of the mutual exclusion and the test for emptiness. The behaviour
of the semantics in this case is therefore not important. With the rules as they stand, a
thread that attempts to pop an empty queue will block indefinitely, without giving up any
of its locks, so will most likely cause a deadlock. Perhaps we should define some kind of
exception to be raised in this event, to make the error condition more explicit, but this
has not been done in this report.

The rule (NdCond) is more complex. The expression will reduce to one of {e1 . . . ek, e}.
Recall that we call a pair (mi

1 . . .mi
ni , ei) “suitable” if the queues associated with mi

1 . . .mi
ni

are non-empty. Thus the top case within the (NdCond) rule will apply for some i, if the
ith pair is suitable. Thus, the bottom case only applies if there is no i such that the ith pair
is suitable, and thus the expression chosen is the “default” one. Otherwise the expression
returned is ei, and the choice out of the set of possible suitable values for i is arbitrary.

The judgement (WFClass) ensures that all the methods that have associated queues
actually exist in the class, and return void. They do not have to return void for any
reason of type safety, but since in the translation from LS, every queue belongs to an
asynchronous method, and all asynchronous methods have a return type of void, we can
afford to make this restriction.

The type rules for the queue operations ensure that the queues being referenced exist
within the appropriate class. The rules (STPush) and (STPop) also use M(P J∗, c, m)
to get the type of the elements that will be stored in the queue. The rule (STNdCond)
ensures that all the expressions have the same type. Because the ndcond expression itself
resolves to one of these expressions, it too has the same type as all the sub-expressions.

8.2 Definition of the translation ϕSJ∗

8.2.1 Example

To demonstrate how the translation works, we first consider an example LS program.
The program has one class, and one fairly general synchronous chord. We translate the
program into a valid LJ∗ program without changing its behaviour or structure. Here is
the program:

84

8.2. Definition of the translation ϕSJ∗

Programs:

P J∗ ∈ LJ∗ = Idc × Idm → Methsig (Type signatures)
× Idc × Idm → P(SrcExpr) (Method bodies)
× Idc → P(Idm) (Queues)
× Idc → Idc (Superclass)

Methsig ::= tr m(t1 . . . tn)
t ∈ Types ::= c | void

e ∈ SrcExpr ::= null | voidval | this | x | new c | e.m(e1 . . . en)
| e ; e | spawn e | lock e | unlock e | wait e
| notify e | notifyAll e | push x this m | pop this m
| ndcond this ((m1

1 . . .m1
n1), e1) . . . ((mk

1 . . .mk
nk), ek)(e)

m ∈ Idm c ∈ Idc x ∈ Ida

Runtime objects:

h ∈ Heap = N → (Idc × (Idm → Multiset(V al)))
e ∈ RunExpr ::= v | new c | e.m(e1 . . . en) | e ; e | spawn e

| lock e | unlock e | wait e | notify e
| notifyAll e | push v ι m | pop ι m
| ndcond ι ((m1

1 . . .m1
n1), e1) . . . ((mk

1 . . .mk
nk), ek)(e)

| locked ι e | waiting ι
v ∈ V al ::= null | voidval | ι

ι ∈ N (Addresses)
E[·] ::= E[·].m(e1 . . . en) | ι.m(v1 . . . vi, E[·], e1 . . . ej)

| E[·] ; e | v ; E[·] | lock E[·] | unlock E[·]
| wait E[·] | notify E[·] | notifyAll E[·]
| locked ι E[·]

M(P J∗, c, m) = P J∗↓1(c, m) Meths(P J∗, c, m) = P J∗↓2(c, m)

Q(P J∗, c) = P J∗↓3(c) Sup(P J∗, c) = P J∗↓4(c)

Figure 8.1: Syntax of LJ∗.

85

Chapter 8. LS is at most as expressive as LJ∗

P J∗ ` e, h e′, h′

P J∗ ` e1 . . . en, e, h e1 . . . en, e′, h′
(Run)

h(ι) = Udf
P J∗ ` E[new c], h E[ι], h[ι 7→ Jc‖λm.∅K]

(New)

h(ι) = Jc‖ K, e ∈ Meths(P, c, m)

P J∗ ` E[ι.m(v1 . . . vn)], h E[e[v1/x1 . . . vn/xn, ι/this]], h
(Inv)

∀i ∈ {1 . . . n}.@E′.ei = E′[locked ι]
@E′.E[lock ι] = E′[locked ι]

P J∗ ` e1 . . . en, E[lock ι], h e1 . . . en, locked ι E[voidval], h
(Lock)

P J∗ ` E1[locked ι E2[unlock ι]]], h E1[E2[voidval]], h
(Unlock)

P J∗ ` E1[locked ι E2[wait ι]]], h E1[E2[waiting ι]], h
(Wait)

P J∗ ` e1 . . . en, E1[waiting ι], E2[locked ι E3[notify ι]], h
e1 . . . en, E1[lock ι], E2[locked ι E3[voidval]], h

(Notify)

∀i ∈ {1 . . . n}.@E′.ei = E′[waiting ι]

P J∗ ` e1 . . . en, E1[locked ι E2[notify ι]], h
e1 . . . en, E1[locked ι E2[voidval]], h

(NotifyNone)

∀i ∈ {1 . . . n}.e′i =

{

E′[lock ι] if ei = E′[waiting ι]
ei otherwise

P J∗ ` e1 . . . en, E1[locked ι E2[notifyAll ι]], h
e′1 . . . e′n, E1[locked ι E2[voidval]], h

(NotifyAll)

h(ι) = Jc‖qsK
P J∗ ` E[push v ι m], h E[voidval], h[ι 7→ Jc‖qs[m 7→ qs(m) ∪ {v}]K]

(Push)

h(ι) = Jc‖qsK, v ∈ qs(m)
P J∗ ` E[pop ι m], h E[v], h[ι 7→ Jc‖qs[m 7→ qs(m)\{v}]K]

(Pop)

h(ι) = Jc‖qsK

e′ =

{

ei if i ∈ {1 . . . k}.∀j ∈ {1 . . . nk}.qs(mi
j) 6= ∅

e otherwise
P J∗ ` E[ndcond ι ((m1

1 . . .m1
n1), e1) . . . ((mk

1 . . . mk
nk), ek)(e)], h E[e′], h

(NdCond)

P J∗ ` e1 . . . en, E[spawn e], h e1 . . . en, E[voidval], e, h
(Spawn)

Figure 8.2: Semantics of LJ∗.

86

8.2. Definition of the translation ϕSJ∗

Well-formedness:

∀c.Sup(P J∗, c) 6= Udf =⇒ P J∗ ` c

` P J∗
(WFProg)

P J∗ ` Sup(P J∗, c) �cl

∀m.M(P, Sup(P J∗, c), m) = tr m(t1 . . . tn) =⇒
∃t′r v tr, t

′

1 w t1 . . . t′n w tn.M(P J∗, c, m) = t′r m(t′1 . . . t′n)

∀m, e ∈ Meths(P J∗, c, m)
M(P J∗, c, m) = tr m(t1 . . . tn),
P J∗, [x1 7→ t1 . . . xn 7→ tn, this 7→ c] ` e : tr

∀m ∈ Q(P J∗, c).M(P J∗, c, m) = void m()
P J∗ ` c

(WFClass)

Sup(P J∗, c) 6= Udf ∨ c = Object

P J∗ ` c �cl
(IsClass)

Source type rules: (for (STLock), (STUnlock), (STNotify) and (STNotifyAll) see
(STWait))

v ∈ {this} ∪ Ida

P J∗, Γ ` v : Γ(v)
(STVar)

P J∗ ` c �cl

P J∗, Γ ` null : c
(STNull)

P J∗, Γ ` voidval : void
(STVoid)

P J∗ ` c �cl

P J∗, Γ ` new c : c
(STNew)

P J∗, Γ ` e : c
∀i ∈ {1 . . . n}.P J∗, Γ ` ei : ti
M(P J∗, c, m) = tr m(t1 . . . tn)

P J∗, Γ ` e.m(e1 . . . en) : tr

(STInv)
P, Γ ` e1 : t1
P, Γ ` e2 : t2

P, Γ ` e1 ; e2 : t2

(STSeq)

P J∗, Γ ` e : c
P J∗, Γ ` Sup(P J∗, c) = c′

P J∗, Γ ` e : c′
(STSub)

P J∗, Γ ` e : void
P J∗, Γ ` spawn e : void

(STSpawn)

P J∗, Γ ` e : c
P J∗, Γ ` wait e : void

(STWait)

Γ(x) = t, Γ(this) = c
m ∈ Q(P J∗, c)

M(P J∗, c, m) = void m(t)
P J∗, Γ ` push x this m : void

(STPush)

Γ(this) = c
∀i ∈ {1 . . . k}. (STNd)

P J∗, Γ ` ei : t
∀j ∈ {1 . . . ni}.mi

j ∈ Q(P J∗, c)
P J∗, Γ ` e : t
P J∗, Γ ` ndcond this (m1

1 . . .m1
n1 , e1)

. . . (mk
1 . . .mk

nk , ek)(e) : t

Γ(this) = c
m ∈ Q(P J∗, c)

M(P J∗, c, m) = void m(t)
P J∗, Γ ` pop this m : t

(STPop)

Figure 8.3: Rules for well-formed LJ∗ programs.

87

Chapter 8. LS is at most as expressive as LJ∗

class C {

t_r m1(t1 m1_x) & async m2(t2 m2_x) & ... & async mn(tn mn_x) {

e

}

}

This is converted into the following code: Note the new method m_b is used to hold the
body of the original chord, while all the other methods play the role of the chord semantics
rules (InvS) and (InvA).

The method m1 checks whether the required items are on the queues (using the se-
mantics of ndcond this). If there are queued values available then it invokes the body
and returns the result. This is achieved by calling the method m_b, which contains the
chord body, and the values on the queue are held in this methods arguments. In a real
language it would not be necessary to create this additional method since there would be
local variables available. In our abstraction, however, there is no other way.

If there is not a full complement of queued values it executes wait this, until another
thread calls one of the asynchronous methods, whereupon it is woken up and recursively
executes m1 to check the queues again.

The asynchronous methods m2 to mn place values onto the queues and notify any threads
that need to synchronise on these queues, that they need to wake up and check again. All
implementations of the chord semantics rules (InvS) and (InvA) are protected by the mutex
so that threads do not encounter an inconsistent state of the queues.

class C {

t_r m1(t1 x_1) {

lock this;

ndcond (m2 ... mn, m_b(pop this m1, ..., pop this mn, x_1)

(wait this; unlock this; m1(x_1))

}

void m2(t2 m2_x) {

lock this;

push x this m2;

notifyAll this;

unlock this

}

...

void mn(tn mn_x) {

lock this;

push x this mn;

notifyAll this;

unlock this

}

void m_b(t1 x_1, t2 x_2, ..., tn x_n) {

unlock this;

e[x_1/m1_x ... x_n/mn_x]

}

}

88

8.2. Definition of the translation ϕSJ∗

8.2.2 Translation

The encoding is given in figure 8.4. Because the encoding is non-deterministic (in the
choice of the names of new methods, and also because we need to define some ordering on
the methods in a chord) we collect this flexibility into a single “decision” function

δ : ∆ = (Idc × Idm × ChordS) → (Idm × (N → Idm))

and specify this as an argument to ϕSJ∗.

For each synchronous method m in class c, and associated chord ch, δ(c, m, ch) =
(mb, X) tells us what method will contain the body of the synchronous chord, and also
gives us a mapping from an index, to the methods in the chord, so that we can identify
specific methods by their number.

This is required because otherwise when we take {m1 . . .mn} = ch↓2, the ordering of
m1 . . .mn is arbitrary. Instead we use X(1) . . .X(n) which is defined at the top level of
the translation, so we know it will be consistent. In LS, arguments were identified with
m1 x . . .mn x, i.e. named after their respective methods. In LJ∗ we have only a single
method per method body, we must identify arguments with an index x1 . . . xn. Without
X, the arguments lose their identity when encoded into a single method. We must be sure
that we correctly substitute the arguments in the chord body.

The result of ϕSJ∗(P
S, δ) is only well-defined when δ is well-formed, i.e. when P S ` δ

as defined below:

P S ` δ ⇐⇒ ∀c,m, ch ∈ SChs(P S , c,m) .
let δ(c,m, ch) = (mb, X)

M(P S , c,mb) = Udf , ∀m′
b = δ(c′,m′, ch′)↓1.c

′ = c,m′ = m, ch′ = ch

X is a bijection from {1 . . . |ch↓1|} to ch↓1

∀c,m, ch.δ(c,m, ch) 6= Udf =⇒
ch ∈ SChs (P S , c,m)

8.2.3 Properties of the translation

These properties are not interesting results in the broader scope of this report, but are
presented here because they reflect the characteristics of this translation, and thus help us
understand it. If P J∗ = ϕSJ∗(P

S, δ):

• |Meths(P J∗, c, m)| ≤ 2 This is used purely to capture the idea that when a method
is a synchronous part and an asynchronous part of chords in a class, it is non-
deterministic which behaviour is chosen.

• M(P S, c, m) 6= Udf =⇒ M(P S, c, m) = tr m(ta) so the number of arguments in
M(P J∗, c, m) is 1.

89

Chapter 8. LS is at most as expressive as LJ∗

ϕSJ∗(P
S , δ) = P J∗ if and only if

M(P J∗, c, m) =

M(P S , c, m) if M(P S , c, m) 6= Udf
tr m(t1 . . . tn, ts) if ∃ch, ms, c v c′ . δ(c′, ms, ch) = (m, X), n = |ch↓1|,

M(P S , c′, ms) = tr ms(ts),

∀i ∈ {1 . . . n}.M(P S , c′, X(i)) = void X(i)(ti)

Meths(P J∗, c, m) = { unlock this; ch↓2[x1/X(1) x . . . xn/X(n) x, xn+1/ms x]
| ∃ms, ch, X.δ(c, ms, ch) = (m, X), n = |ch↓1| }

∪ { lock this; push x this m; unlock this | if m ∈ Q(P S , c) }

∪ { lock this;
ndcond this (X1(1) . . . X1(n1), m1

b(pop this X1(1), . . . , pop this X1(n1), x1))
...

(Xk(1) . . . Xk(nk), mk
b (pop this Xk(1), . . . , pop this Xk(nk), x1))

(wait this; unlock this; this.m(x1)) |
if SChs(P S , c, m) = {ch1 . . . chk}, k ≥ 1,

∀j ∈ {1 . . . k}.nj = |chj↓1|, δ(c, m, chj) = (mj
b, X

j) }

Q(P J∗, c) = Q(P S , c)

Sup(P J∗, c) = Sup(P S , c)

Figure 8.4: Translation ϕSJ∗ : (LS × ∆) → LJ∗

90

8.3. Preservation of structure (proof)

8.3 Preservation of structure (proof)

We first formally define the property of structure preservation for our programs P S and
P J∗ where P J∗ = ϕSJ∗(P

S, δ). We refer to section 3.1.2, where the contribution of [5] is
put into the context of our object-oriented formalisations. In order for the translation to
be structure-preserving, it must satisfy:

• All syntactic constructs of the source expressions of LS are also present in LJ∗ are
the five constructs that implement mutual exclusion. Thus, source expressions must
not be modified in the translation.

The synchronous chord bodies of P S are placed into methods of P J∗, unchanged
except for the renaming of arguments which is explicitly allowed in section 3.1.4.

• Method signatures are common to LS and LJ∗ (LJ∗ allows multiple arguments, but
this is an extension of LS’s single arguments), so they must not be altered, although
we do allow the addition of new methods.
∀c, m.M(P S, c, m) = msig ⇒ M(P J∗, c, m) = msig

From P S ` δ we know that the two cases for the definition of M(P J∗, c, m) in ϕSJ∗

are exclusive, so when M(P S, c, m) = msig i.e. M(P S, c, m) 6= Udf , we know that
M(P J∗, c, m) = M(P S, c, m) = msig. �

• Synchronous chords are present in LS but not in LJ∗, so they must be replaced with
a macro, and each body must be used exactly once in the macro.

The first case of Meths(P J∗, c, m) in ϕSJ∗ defines a method body containing ch↓2

where δ defines m to be the method that holds the body of the synchronous chord
ch of method ms in class c. Since every such synchronous chord has its own unique
method for holding its body, we know that the body will only be used once, and we
can immediately see it is not changed except for the renaming of arguments which
is allowed as explained in section 3.1.4. �

• The feature of classes is common to LS and LJ∗, so the structure of classes must be
preserved, although we allow the addition of new classes:
∀c.Sup(P S, c) = c′ =⇒ Sup(P J∗, c) = c′

We can prove this by inspection of ϕSJ∗, which actually has the stronger property
that no classes are added or removed. �

8.4 Preservation of well-formedness (proof)

We need to establish that the well-formedness of a program is preserved when the pro-
gram is translated, this is the notion of preservation of programness in [5]. Let P J∗ =
ϕSJ∗(P

S, δ). We must show that ` P S =⇒ ` P J∗.

Lemma 8.4.1 If P J∗ = ϕSJ∗(P
S, δ) then P S ` c �cl =⇒ P J∗ ` c �cl

Proof:

91

Chapter 8. LS is at most as expressive as LJ∗

P S ` c �cl =⇒ Sup(P S, c) 6= Udf ∨ c = Object (IsClass)

=⇒ Sup(P J∗, c) 6= Udf ∨ c = Object (Def ϕSJ∗)
=⇒ P J∗ ` c �cl (IsClass)

Lemma 8.4.2 Method type signatures are preserved over inheritance in the translated
program: If ` P S and P J∗ = ϕSJ∗(P

S, δ) then
∀m.M(P J∗, Sup(P J∗, c), m) = tr m(t1 . . . tn) =⇒
∃t′r v tr, t

′
1 w t1 . . . t′n w tn . M(P J∗, c, m) = t′r m(t′1 . . . t′n).

Proof:

Let ` P S and M(P J∗, Sup(P J∗, c), m) = tr m(t1 . . . tn). We know from the definition of
ϕSJ∗ that there are two possibilities:

• M(P S, Sup(P S, c), m) = tr m(ta) 6= Udf , n = 1, in which case from P S ` c we
know that ∃t′r v tr, t

′
a w ta.M(P S, c, m) = t′r m(t′a), and from the definition of ϕJS∗

we know that M(P J+, c, m) = t′r m(t′a) �

• ∃ch, ms, Sup(P J∗, c) v c′.δ(c′, ms, ch) = (m, X), etc. Clearly the same case will
apply for M(P J∗, c, m) because c v Sup(P J∗, c) v c′, and thus the subclass’s
method will have the same type. �

Lemma 8.4.3 Well-typedness of expressions is preserved over the translation:
If P J∗ = ϕSJ∗(P

S, δ), then P S, Γ ` e
S : t =⇒ P J∗, Γ ` e

S : t
Proof: Induction over the structure of derivations.

• STVar, STVoid: Trivial. �

• STNull, STNew: use lemma 7.5.1. �

• STInv: From the definition of ϕJS∗,
M(P S, c, m) = t m(ta) 6= Udf =⇒ M(P J∗, c, m) = t m(ta). Using this and the
induction hypothesis we can show P J∗, Γ ` e1.m(e2) : t. �

• STSeq, STSpawn: Use the induction hypothesis. �

• STSub: Use Sup(P S+, c) = Sup(P J , c) from definition of ϕJS+, and the induction
hypothesis. �

Lemma 8.4.4 If P, Γ ` e : t and Γ′(v[x1/m1 x . . . xn/mn x]) = Γ(v) for
v ∈ {x1 . . . xn, this}, then P, Γ′ ` e[x1/m1 x . . . xn/mn x] : t

Proof: Induction over the structure of derivations.

92

8.4. Preservation of well-formedness (proof)

• Only interesting case is (STVar), since all the other rules type other kinds of
syntax, and ignore Γ. Because the changes to the expression being typed and the
environment are compatible, we simply use the definition of Γ′ to type the
substitution of e to t. �

Lemma 8.4.5 P S ` c =⇒ P J∗ ` c
Proof:

P S ` c =⇒ P S ` Sup(P S, c) �cl (WFClass)
=⇒ P S ` Sup(P J∗, c) �cl (Def ϕSJ∗)
=⇒ P J∗ ` Sup(P J∗, c) �cl (Lemma 8.4.1)

P S ` c =⇒ ∀m.M(P J∗, Sup(P J∗, c), m) = tr m(ta)
⇒ ∃t′r v tr, t

′
a w ta . M(P J∗, c, m) = t′r m(t′a) (Lemma 8.4.2)

For all bodies e ∈ Meth(P J∗, c, m) either:

• ∃ms, ch, X.δ(c, ms, ch) = (m, X), n = |ch↓1| and e = unlock this; e′ where
e′ = ch↓2[x1/X(1) x . . . xn/X(n) x, xn+1/ms x].

– From P S ` δ we know that ch ∈ SChs(P S, c, ms) and for each i ∈ {1 . . . n},
X(i) is a distinct member of ch↓1. Thus from P S ` c we know that
P S, Γ ` ch↓2 : tr where M(P S, c, ms) = tr ms(ta),
Γ = [X(1) x 7→ t1 . . .X(n) x 7→ tn, ms x 7→ tsthis 7→ c] and
∀i ∈ {1 . . . n}.M(P S, c, X(i)) = void X(i)(ti)

– From the definition of ϕSJ∗ we know that M(P S∗, c, m) = tr m(t1 . . . tn, ts).

– We can derive P J∗, Γ′ ` e′ : tr where
Γ′ = [x1 7→ t1 . . . xn 7→ tn, xn+1 7→ ts, this 7→ c] from the above typing
P S, Γ ` ch↓2 : tr, using lemma 8.4.2 and lemma 8.4.4.

– Finally, unlock this trivially types to void, so the entire body types to
P J∗, Γ ` e : tr. �

• m ∈ Q(P S, c) in which case e = lock this; push x this m; unlock this and:

– Because m ∈ Q(P S, c), we know that m ∈ {m1 . . .mn} where
({m1 . . .mn},) ∈ SChs(P S, c, ms) for some ms. From P S ` c, we know that
M(P S, c, m) = void m(t) for some t. By the definition of ϕSJ∗, we know that
M(P J∗, c, m) = void m(t).

– Let Γ = [x1 7→ t, this 7→ c]. Trivially, P J∗, Γ ` lock this : void and
P J∗, Γ ` unlock this : void. Also, using (STPush),
P J∗, Γ ` push x this m : t since we know from the definition of ϕSJ∗ and
m ∈ Q(P S, c) that m ∈ Q(P J∗, c).

93

Chapter 8. LS is at most as expressive as LJ∗

– Finally, we can type the composition of the three statements to void, i.e.
P J∗, Γ ` e : void. �

• e = lock this; ndcond this . . . (see figure 8.4) where
SChs(P J∗, c, m) = {ch1 . . . chk}, ∀j ∈ {1 . . . k}.(mj

b, X
j) = δ(c, m, chj), n

j = |chj↓1|

– Firstly we know from the fact that SChs(P S, c, m) is defined, that
M(P S, c, m) = tr m(ta), and thus from the definition of ϕSJ∗ that
M(P J∗, c, m) = tr m(ta). We must show that P J∗, Γ ` e : tr where
Γ = [x1 7→ ta, this 7→ c]. This is typed with STSeq, we need to type the
lock this part, which is trivially void, and the ndcond part, which is more
difficult:

– We know from P S ` δ that all the Xj(i) ∈ chj so Xj(i) ∈ Q(P S, c) and thus
are also in Q(P J∗, c). From P S ` c, we know that each
M(P S, c, Xj(i)) = void X(i)(tji) and therefore
M(P J∗, c, Xj(i)) = void X(i)(tji) for some tji . This means
P J∗, Γ ` pop this X j(i) : tji where Γ = [x1 7→ ta, this 7→ c].

– From the definition of ϕSJ∗, we can deduce that
M(P J∗, c, mj

b) = tr mj
b(t

j
1 . . . tjn, ta). This means that for all j ∈ {1 . . . k} we

can type: P J∗, Γ ` mj
b(pop this Xj(1) . . . pop this X j(nj), x1) : tr

– We can also use the above information to show
P J∗, Γ ` wait this; unlock this; this.m(x1) : tr.

– This means we can use the (NdCond) rule to get P J∗, Γ ` e′ : tr, and thus we
can use (StSeq) to get P J∗, Γ ` e : tr. �

For all methods m ∈ Q(P J∗, c) we know from ϕSJ∗ that m ∈ Q(P S, c), and this means
m ∈ {m1 . . .mn} where ({m1 . . .mn},) ∈ SChs(P S, c, m) for some m. From P S ` c, we
know that ∀i ∈ {1 . . . n}.M(P S, c, m) = void m()

The above is sufficient to prove P J∗ ` c. �

Theorem 8.4.6 ` P S =⇒ ` P J∗.
Proof:
` P S =⇒ ∀c.Sup(P S, c) 6= Udf ⇒ P S ` c (WFProg)

=⇒ ∀c.Sup(P J∗, c) 6= Udf ⇒ P S ` c (Def ϕSJ∗)

=⇒ ∀c.Sup(P J∗, c) 6= Udf ⇒ P J∗ ` c (Lemma 8.4.5)
=⇒ ` P J∗ (WFProg)

94

Chapter 9

Conclusion

9.1 Summary of the technical results of this project

We have defined a notion of structure-preservation of program translations (based on [5]).
If a translation is structure-preserving, then it does not cause unacceptable change to the
structure of programs. We believe this definition is a reasonable model of the perception
a programmer might have, of whether the restructuring required when porting a program
to a different language is acceptable or not.

We have defined four translations between five languages, that preserve program struc-
ture, validity, and behaviour. We have identified formal properties that define program
validity (well-formedness) and structure, and proved that these properties are preserved
over all the translations.

We have not proved the preservation of program behaviour over the translations, in
other words we cannot be certain that the translated programs “do the same thing” as the
original programs. We went some way towards this goal in section 5.4, but this is far from
complete, and we have not looked at the other translations. However we do believe that
the behaviour is preserved. In some way writing a translation is like writing a program,
and programmers all over the world are writing programs that they believe to behave in
a certain way, without formal verification. We assume for now that the translations do
preserve behaviour, despite the lack of formal proof.

• We know from ϕAS (chapter 5) and ϕSA (chapter 6) that LS and LA are equally
expressive. We believe this result will scale up to realistic languages containing many
other features, such as Java and C] (assuming those languages had chords). This
means that a programmer can write their program using either asynchronous chords
for thread creation, or using the spawn statement. Neither approach allows novel
ways of structuring a program, and certainly neither expresses program behaviour
that the other does not.

Programmers do not often need to spawn new threads, and when they do, this process
does not directly risk erroneous behaviour such as race conditions and deadlock, like
other aspects of concurrent programming do. Thread creation is not directly related
to synchronisation, so this result is not particularly interesting by itself.

• We assume that LS and LS+ are equally expressive when expressing synchronisation,

95

Chapter 9. Conclusion

because of the features present in LS+, fields do not add to the expressiveness[4], and
integers are orthogonal to synchronisation so should not affect our results.

• We know from ϕJS+ (chapter 7) that all programs in the language LJ can be rewritten
into programs of LS+ without making radical changes to their structure and without
changing their behaviour. This means that rewriting a program with chords instead
of monitors will not require restructuring the program.

• We know from ϕSJ+ (chapter 8) that all LS programs, that is programs using syn-
chronous chords, can be re-written into programs of LJ∗, i.e. they can be re-written
to use monitors instead, without needing radical changes to their structure. This
means that any programs that use chords can be re-written to use monitors, and
thus chords do not allow programs to be written in new ways.

9.2 What does this mean for the programmer?

We know that chords are equally as expressive as monitors, but what does this mean for
the programmer? Let us take an analogy. If we add a linked list implementation to a
language’s standard library, even though the language is expressive enough to represent
lists by itself, we are not adding to the expressiveness of the language. We might still
like to do this though, because code that needs lists will be more concise if it does not
have to define lists itself. Just because monitors or chords are equally expressive, does not
mean one should be discarded. So if we have both constructs in a language, how does the
programmer know which one to choose?

9.2.1 Conciseness – an application suited to chords

What actually happens when we change a chorded program to a program using monitors?
Our formal translations preserve structure, but we have not spoken of other factors such
as conciseness. In section 2.3 we gave an example of a program ideally suited to chords,
and its implementation in chords was very simple as a result. If we show how to express
this program with monitors, we will see a “worst case” of the cruft that needs to be added
by the translation.

This is presented in figure 9.1. It is not a direct application of ϕSJ∗; it contains some
obvious optimisations to make the code more concise, but the general idea behind the
translation is the same. Note that we take some liberties here:

Firstly, there is no lock() or unlock() method associated with objects in Java, and
even if we defined them ourselves (as described in section 2.2), it it would erroneously
allow us to take the lock even though another thread was in a synchronized block. This
is frustrating, but it is a problem with Java’s implementation of monitors, not a problem
with monitors themselves. There is no cause to switch to chords just because one language
has a problematic implementation of monitors.

What Java should have is a unified mutex system, where there is one mutex per object,
which is accessed both with structured synchronisation (synchronized) and unstructured
synchronisation (i.e. the fundamental lock() and unlock() methods are exposed). If

96

9.2. What does this mean for the programmer?

public abstract class ActiveObject extends Thread {

abstract protected void processMessage();

void run () {

while (!done) { this.processMessage(); }

}

}

class StockServer extends ActiveObject {

void processMessage() {

lock();

if (!q_addClient.empty()) {

Client c = q_addClient.pop();

unlock();

/* process addClient message */

} else if (!q_wireQuote.empty()) {

Quote q = q_wireQuote.pop();

unlock();

/* process wireQuote message */

} else if (q_closeDown > 0) {

q_closeDown--;

unlock()

/* process closeDown message */

} else {

wait();

unlock();

processMessage();

}

}

private List q_addClient = new LinkedList();

synchronized void addClient(Client c) {

q_addClient.add(c);

notify();

}

private List q_wireQuote = new LinkedList();

synchronized void wireQuote(Quote q) {

q_wireQuote.add(q);

notify();

}

private int q_closeDown = 0;

synchronized void closeDown() {

q_closeDown++;

notify();

}

}

Figure 9.1: Monitor translation of the active object example

97

Chapter 9. Conclusion

there is more than one underlying implementation of the mutex, each with different per-
formance in different circumstances, then the programmer could specify their choice at
the top of the class. Instead Java has a mutex in each object that is accessed with
synchronized, and also mutexes in the standard library that can be constructed and
controlled by method calls. The two approaches are completely disjoint.

The effect of this is that if a program can elegantly use one or other of the techniques
(structured or unstructured), but cannot access the advantages of both. We can specu-
late that this situation has developed due to the incremental improvements of the Java
language. The Java language designers most likely wanted to avoid overhauling the imple-
mentation of synchronized so they added the more efficient monitors to the Java library,
which is accessed with methods, and is therefore unstructured. We are idealistic here, by
assuming that the languages of the future will not have a backlog of legacy compatibility
to aversely affect their design.

The second liberty we take, is that Java allows us to interrupt calls to wait(), and
this causes an exception to be thrown. This means we have to deal with this exception
in our code, or it will not be well-typed. We omit this in the above translation since
our consideration of chords does not include such details as interrupting the blocking of
threads that call synchronous methods.

Taking into consideration that the active object example is very well suited to Java,
we can count the amount of extra lines in the monitor translation. There are nine lines
used for synchronisation, and thirteen used for implementing the buffer that is implicit
with chords. If we were to choose between the two programs, we would naturally say the
conciseness of the first makes it a better program. In short, there is less to go wrong.

9.2.2 Conciseness – an application suited to monitors

What about an application that is not so suited to chords? The active object example does
not care about the ordering of messages it receives, it also does not require the buffers to be
bounded. This is very convenient because this is exactly the semantics that chords offer.
We should consider a program, the behaviour of which is precisely what the semantics of
monitors provides.

Suppose we have a system of messages where it is more important that the latency
of the system is low, than all the messages get processed. If the processing resources
are not sufficient to process a message, it is discarded. This would by typical for media
applications which have tough realtime requirements, or any system regularly sensing its
environment, such as a ship’s tactical radar, or a single client in a multi-player game. Let
us take the radar case for illustration:

A ship’s radar continually scans all the sky around the ship, it produces a report on
the status of large moving objects within a certain range, and dispatches this report to an
array of processing hardware. We can imagine the report as a two-dimensional array of
pixels, like a video picture on a television. The processing hardware interprets this image
and decides whether there are any threats, for example it can work out the velocity of
objects by matching them with objects from previous “frames” and thus calculating how
far they have moved.

It is essential that the most recent frames are processed quickly. Because of storage
requirements, only one frame can be stored at a time so this frame is overwritten if a

98

9.2. What does this mean for the programmer?

new report is available. The code in this example could use an arbitrary finite buffer, but
this would be more complex. It is not uncommon for safety critical and military projects
to place concrete bounds on the size of buffers, so that the system’s dynamic memory
use is more predictable. By increasing the number of computers that process the frames,
we can avoid discarding so many frames, which increases the accuracy of the computers’
conclusion.

We model this with threads. The radar itself (that generates the messages) is a thread
that continually attempts to push messages into a buffer. The ship’s computers are a set of
threads that continually poll the buffer. Each computer receives a message and processes
it independently from the other computers.

class Radar {

run() {

while (true) {

/* scan environment */

buffer.push(report);

}

}

}

class Computer {

run() {

while (true) {

report = buffer.pop();

/* process report, some comms with other systems */

/* control weapons systems */

}

}

}

The question is now how to implement the buffer. It must be synchronised so that the radar
and the computers do not interfere, it must not store more than one report. Calls to pop()

should block if there is no message available. Let us first see the monitor implementation:

public class DiscardBuffer {

private Object buffer;

synchronized void push (Object o) {

buffer = o;

notify();

}

synchronized Object pop () throws Exception {

while (buffer!=null)

wait();

Object r = buffer;

buffer = null;

return r;

}

}

99

Chapter 9. Conclusion

Here, buffer==null is true only when there is no report to process. Repeated calls to
push(o) will overwrite messages with the latest data. Calls to pop() wait until a report
is available, then take the report, write the buffer to null (which stops other computers
Processing the same data), and returns the report to whichever ship’s computer called
pop() for processing.

Now we compare this to an implementation of the same buffer, but purely using chords.
Because we have to implement precisely the semantics of wait() and notify(), the trans-
lation is much like the result of ϕJS+, only with some optimisations. The translation is
shown in figure 9.2.

We can see that this, much like the implementation of the active object with monitors,
is much larger and thus harder to understand and maintain.

We conclude that different applications would benefit from implementation in either
chords or monitors, depending on the behaviour required. If the behaviour is closer to the
semantics of chords, we should implement it in chords. Likewise there are times when we
should use monitors. It seems the implementation of an ordered “fifo” buffer is of similar
complexity in both paradigms:

public class UnboundedOrderedBuffer {

private List list = new LinkedList();

synchronized void push (Object o) {

list.add(o);

notify();

}

synchronized Object pop () throws Exception {

while (list.size()==0)

wait();

return list.remove(0);

}

}

public class UnboundedOrderedBuffer {

private block() & pulse() { }

private List list = new SynchronizedLinkedList();

void push (Object o) {

list.add(o);

this.pulse();

}

Object pop () {

this.block();

return list.remove(0);

}

}

100

9.2. What does this mean for the programmer?

public class DiscardBuffer {

private lock() & unlock() { }

private block() & pulse() { }

private int counter;

private Object buffer;

void push (Object o) {

this.lock();

buffer = o;

if (counter!=0) {

this.pulse();

this.counter--;

}

this.unlock();

}

Object pop () throws Exception {

this.lock();

while (buffer!=null) {

this.counter++;

this.unlock();

this.block();

this.lock();

}

Object r = buffer;

buffer = null;

unlock();

return r;

}

}

Figure 9.2: Chorded translation of the discard buffer (ship’s radar) example

101

Chapter 9. Conclusion

9.3 Do chords discourage mistakes? An analogy with

garbage collection.

The following remark is from [4]:

“Chords might provide the same kind of productivity gains for programmers
as automatic garbage collection has in the past.”

Using the expressiveness results from this report, we can investigate this. Let us review the
productivity gains that we can attribute to garbage collection in programming languages.

A language with garbage collection does not support the “freeing” of allocated memory.
To convert a program that manually freed its allocated memory, we just need to remove all
the calls to free(memory), perhaps replacing them with voidval. The behaviour remains
the same because the memory is freed by the run-time environment. Assuming the program
that did the manual freeing was correct, it did not keep references to the freed memory,
and did not fail to free memory to which all references had been lost. In this case, in the
translated program the garbage collector is doing the same job as the program did, so the
behaviour is the same.

Suppose the programmer made an error in their programming, and this was not spotted.
Suppose an area of memory continued to be used after it was freed. On all the test
runs, the behaviour was correct, but there was always the possibility of something going
wrong. Formally, execution of the program would have resulted in some kind of run-
time exception, but concrete implementations often do not check for errors, because this
undermines performance.

If we convert this program into a language with garbage collection, by simply removing
all the free() calls, we actually end up with a program with different behaviour, and no
errors. Re-writing a program with garbage collection can remove errors from the program.

This is not the case with our translations here. When we convert monitor programs so
that they use chords, the behaviour is always the same, including race conditions and dead-
lock. Whereas garbage collection completely eliminates the possibility of bad behaviour,
chords merely allow us to express this bad behaviour in a different way. For example,
chorded programs can deadlock if two threads are both waiting for the other to send a
message.

If, however, we had a static analysis that detected deadlock in programs, and these
programs were declared mal-formed, this would likely provide the same kind of productivity
gains for programmers as garbage collection has done. We cannot “fix” deadlock, like we
can with bad memory management, but we can at least warn about it.

Chords may however discourage mistakes in concurrent programming, because as seen
above, some programs can be written much more concisely with chords. Clear and concise
programs are easier for the programmer to intuitively verify, and this should in itself
discourage mistakes. The question is: How many programs will need to re-implement
chords, or chord-like message passing mechanisms in their code. If there is enough demand
for chord-like synchronisation primitives, then their inclusion in a language will have a big
impact on the correctness of code at large.

In summary garbage collection makes memory errors impossible. Chords have a com-
plex semantics and this might draw complexity out of programs, making them simpler.

102

9.4. Where did chords make the encodings difficult?

Chords therefore might have a similar impact to object-oriented programming, since in
languages like C, one has to implement inheritance and late binding with structures and
function pointers, and this can invite errors. Whether the impact on the programming
community will be as massive as object oriented programming was, will depend on how
applicable the chord semantics are within the programs that need to be written.

9.4 Where did chords make the encodings difficult?

In the process of inventing translations that encode synchronisation with chords, we have
put a lot of ‘stress’ on chords, as a mechanism for expressing synchronisation in an imper-
ative object-oriented environment. The encodings show the limitations of chords, i.e. how
they can occasionally be slightly clumsy when expressing synchronisation.

In all the translations to chorded languages (ϕAS, ϕSA, ϕJS+), new methods had to be
created to represent the required synchronisation behaviour. This is not always appropriate
because the methods have to be added at the root of the class definition, and this may be
some distance from where the synchronisation needs to take place.

For instance, in ϕSA we had to create a large number of locks per class, one for each
spawn site. These locks would build up in the root of the class and this would adversely
affect the clarity of the code. Forcing the programmer to do synchronisation via method
calls is a weakness of chords. The programmer should have more options for expressing
synchronisation.

What does synchronisation have to do with method invocation anyway? In the Join
calculus, there was no imperative state, so code was written in a functional style, with
use of recursion. It was therefore natural for synchronisation to be coupled with method
invocation because there was nowhere else to put it.

In a language like Java or C] where the code is much more complex, and a lot of
different behaviours are being expressed using different constructs, it is more important
to keep code tidy. Monitors manage this nicely since the synchronisation happens in the
method bodies. Chords, on the other hand, can clutter the top-level of the class with
irrelevant information.

Another problem with concurrency with chords is that the queues often need initial-
ising. For example, the chords idiom that implements a mutex has to have an initial
asynchronous message sent to unlock(). This might be a problem because the construc-
tor is some distance from where the synchronisation might typically occur. The separation
of related concepts in program code makes maintenance hard, since changes to one part
of the code can happen while neglecting the other part.

When we defined structure preservation in 3.1.2, we allowed translations to add meth-
ods and constructors, because these changes are not as serious as changes to the syntactic
structure of source expressions. We still feel that chords can be slightly clumsy when ex-
pressing synchronisation, maybe the Join calculus needs more adaptation to fit neatly in
an imperative object-oriented language like Java or C].

103

Chapter 10

Evaluation and further work

10.1 Evaluation

We now criticise the approach used in this report. There are two kinds of criticisms – “Are
the formalisms and proofs correct?” and “Are the models realistic?”.

10.1.1 Criticisms of formal work

While we have taken care to formally prove certain properties, the proofs have not been
checked by a theorem prover, so we cannot be absolutely sure that there are no missing
cases or invalid assumptions. We cannot be sure that the encodings do indeed preserve
behaviour, because we have not formally proved this. This was omitted due to time con-
straints, and the fact that it is non-trivial to even formally state the property of behaviour-
preservation. More research into bisimulation and observational equivalence was required
and there was no time.

The type systems used were not sufficient to ensure programs did not “go wrong”. We
also did not prove the type system has the subject reduction property, since this would
have required the introduction of run-time well-formedness and the typing of the run-time
expressions.

It would have been good to have proven progress of well-formed programs, indeed this
might have been a necessary assumption for a proof of preservation of behaviour over some
of the translations. For example when encoding Java with chords ϕJS+ (chapter 7), it is
assumed that we always have the lock when we use the functions wait e, notify e, and
notifyAll e, and LJ programs behave differently to their LS+ counterparts when this
assumption is broken.

10.1.2 Accuracy of formalisms

The formalised languages are necessarily abstract, this makes the proofs and translations
easier, but means the results are more ‘distant’ from real programming languages. We not
only omitted features like exceptions and arithmetic which are orthogonal to synchronisa-
tion, but also relevant features like the ability to interrupt the blocking of a thread, and
the ability to test the state of a mutex without blocking, which is often implemented as a
try_lock() function.

104

10.2. Further work

Perhaps the least convincing aspect of this work was the extension of the property
of structure-preservation from [5], to include the structure of programs. Allowing the
addition of methods to classes during a translation seems like an arbitrary decision, and
the justification for doing so was very subjective.

In fact, we believe even the original definition was slightly flawed: Consider the encoding
of notifyAll() using wait() and notify(). This is possible if we wrap the calls to wait()
and notify() with functions that maintain a count of how many threads are currently
waiting. Then the call to notifyAll() can just call notify() the correct number of times
to wake up all the threads. The question is, is this structure preserving. Certainly, all the
calls to wait() need to be replaced with calls to the wrapper function, or they wont be
accounted for by the counter.

If we consider the comparative expressive power of two languages, one with wait(),
notify(), and notifyAll(), and the other with just wait() and notify(), then wait()

and notify() are shared program constructs. This means the translation given above is
not structure-preserving since it is not homomorphic over wait() and notify().

If, however, we consider the comparative expressive power of two languages, one with
wait(), notify(), and notifyAll(), and the other with wait2() and notify2(), i.e.
two constructs with the same semantics as above, but just differently named, then there
are no shared constructs, and the translation is structure-preserving. It does not seem
clear whether it is wrong to consider them as differently named constructs, it all depends
on how the language is formalised.

If we compare two very similar languages, L1 and L2, the structure-preservation prop-
erty is very strict - it must be homomorphic over the majority of language constructs.
But if we go via another language Lx and back again, a language that has no constructs
in common with either L1 or L2 , then we have much more liberty with our translations
L1 ↔ Lx and Lx ↔ L2. Thus L1 may be equivalent to Lx, and Lx may be equivalent to
L2, but L1 may not be equivalent to L2, in terms of expressiveness. In other words, the
expressiveness relation may not be transitive!

Also, some programs which are considered to have the same structure are actually
quite different. This calls into question whether the formal definition of the structure-
preservation property is a realistic enough model of what a programmer would think of
as an acceptable change to a program’s structure, when porting that program from one
language to another.

For example, when translating a construct that is not shared between the two languages,
the result must be a macro encoding of the sub-expressions in that construct. The macro
itself can be arbitrarily large, however. It just has to be consistent across all instances
of that construct in the source program, i.e. the code that replaces the construct cannot
depend on that constructs sub-expressions, except to embed them within itself. If the
macro was very large, it could conceivably dwarf the rest of the program. Having said
this, the translations in this report tended to be quite small.

10.2 Further work

Of the above issues, several could be addressed by further work. It would be useful to
prove that the translations preserve behaviour, and also to develop the semantics and

105

Chapter 10. Evaluation and further work

well-formedness judgement so that it excludes programs that do not progress. It would be
interesting to investigate the expressive power of the synchronisation constructs that we
omitted to include in our formalisms, such as timed waits, interrupted waits, and testing
the state of the mutex without blocking.

It might be better to consider structure-preservation as a graded measure, rather than
an absolute judgement. We can consider precisely how much structure can be preserved
in translations, and even see what changes to the semantics of chords would be needed
to maximise the preserved structure, in the translations. For instance, we can subtract
“points” if a translation needs to add classes, add methods to a class, or add code to the
constructor of a class.

Chords are a very specific kind of message passing, the queues are unordered, and
unbounded. Other approaches are also possible. Having unbounded queues could be a
problem when one thread is sending messages faster than other threads are consuming
them. It would be interesting to compare the different approaches, and even repeat this
work but with an extended version of chords that allow the programmer to specify these
details.

For instance, the programmer could specify whether the queues were to be ordered or
unordered, whether the queue is bounded, if it is bounded, whether to block, or discard
messages that are sent to a full queue. One could also add features to flush a queue, or
to inspect the emptiness of a queue like try_lock() inspects the lockedness of a mutex
without blocking.

We could introduce a mechanism where threads can be interrupted while they are
blocked at a synchronous method call. We could let the programmer initialise a queue
outside of the constructor, like the way that fields can be initialised to a default value
outside of the constructor. These extensions would make chords more flexible, and may
even make monitors completely redundant, i.e. a particular configuration of a chord might
look and behave exactly like condition variables. This is like the way that if a method
has chords, it does not need methods because a synchronous chord with no asynchronous
parts is identical to a method in every way. There are also other kinds of message passing
in other languages, like in Concurrent ML, and in Haskell. One could investigate whether
chords can behave like these language constructs.

It would be interesting to decouple chords from methods, i.e. have expression syntax
to send and receive messages. Sending a message would be like an asynchronous method
invocation, and receiving a message would be like invoking a synchronous chord, i.e. it
would block until all the queues were non-empty, then proceed. Not only would this allow
the programmer to keep the synchronisation code out of the root of the class definition,
it would also avoid the inheritance anomaly. We can call these chord-like constructs
“microchords”. It would be easy to implement conventional chords on top of them, just
by receiving a message at the top of a function that we want to behave like a synchronous
chord.

There is also a link between condition variables, and mutual exclusion. This is evident
in the definition of ϕJS+, where the same chord mechanism implements both the mutex,
and the internals of the condition variable functionality. This could benefit from further
study because we might be able to make the monitor formalisation even simpler, by showing
that one can be implemented one on top of the other. It might be possible to show there is

106

10.2. Further work

an even lower-level and simper formalisation of synchronisation, on top of which monitors
can be implemented.

There is much more to consider, when deciding what synchronisation primitives to offer
the programmer. Ultimately, we must present enough power to make programs as simple
and clear as possible, without introducing too much complexity. The expressiveness of
synchronisation constructs, as considered in this report, tells us something of their power,
and from this we are able to better understand the effect of language on the programming
process. However, subtle issues such as the conciseness of often-written programs when
expressed in different languages are also important.

107

References

[1] Alexander Ahern and Nobuko Yoshida. Formalising java rmi with explicit code mo-
bility. To appear at OOPSLA 2005, 2005.

[2] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for c], 2002.

[3] developerWorks. More flexible, scalable locking in jdk 5.0, October 2004. http:

//www-128.ibm.com/developerworks/java/library/j-jtp10264/.

[4] Sophia Drossopoulou, Alexis Petrounias, Alex Buckley, and Susan Eisenbach. School:
a small chorded object-oriented language. Submitted for publication, March 2005.

[5] Matthias Felleisen. On the expressive power of programming languages. In ESOP ’90:
Selected papers from the symposium on 3rd European symposium on programming,
pages 35–75, Amsterdam, The Netherlands, The Netherlands, 1991. Elsevier North-
Holland, Inc.

[6] Cedric Fournet and Georges Gonthier. The reflexive cham and the join-calculus. In
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 372–385, New York, NY, USA, 1996. ACM
Press.

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation Second Edition. Addison-Wesley, Boston, Mass., 2000.

[8] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun. ACM,
17(10):549–557, 1974.

[9] International Organization for Standardization. Information technology–Portable Op-
erating System Interface (POSIX). 1990. International standard ISO/IEC 9945. IEEE
Std 1003.1-1990 (revision of IEEE Std 1003.1-1988). Part 1. System application pro-
gram interface (API) [C language].

[10] Xavier Leroy. pthread_mutexattr_init(3). Manual page for LinuxThreads - an
implementation of posix threading.

[11] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. In Dr. Dobb’s Journal, March 2005. http://www.gotw.ca/publications/
concurrency-ddj.htm.

[12] Tim Wood. A chorded compiler for java, June 2004. MEng thesis. Supervisor – Susan
Eisenbach.

108

