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Abstract

A summary of the motivation and theory behind abstract interpretation, including the
accumulating semantics, Galois connections and widening. A complete demonstration of
the use of abstract interpretation to define a safe and optimal sign analysis in the context of
a simple imperative language is presented. In addition, a example of widening is described
to improve the termination properties of an interval analysis of the same language.
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Chapter 1

Introduction and Preliminaries

Computer Science has long been interested in the potential for computers to understand the
behaviour of the programs we write, in spite of serious theoretical problems which make all
but the most simple “analyses” impractical. These simple analyses, although incomplete,
are still found in many commonly used compilers. They collect information that supports
error detection as well as various kinds of optimisations. Abstract interpretation is the
theory that connects the semantics of a programming language (the precise behaviour
attributed to the language by its designers), to a cut-down model of the language that a
computer can realistically understand.

An “understanding” of a program typically means the assurance of certain properties,
e.g. if a variable is always positive at a certain point, or if a variable is ever used. We
will see how abstract interpretation can be used to derive an appropriate analysis from a
basic specification. The specification takes the form of a mapping from the concrete and
undecidable world of ultimately precise program properties, to some decidable restriction
of this information. The derived analysis takes the form of an algorithm that can compute
the restricted properties without error.

The theory was pioneered by Cousot and Cousot [2] [3] [4]. This report also draws
from the article [6] and parts of [7].

In order to formalise an approximate program analysis, we need several preliminar-
ies: We must rigorously define the semantics of the language in which our programs are
written. We translate this into an ultimately precise analysis (with which all program
properties can be discovered). This is the starting point for all our derived analyses. It is
also helpful to give an example of a derived, approximate, analysis, initially without any
proof of correctness. This demonstrates what the method of abstract interpretation will
provide. The remainder of this chapter is therefore an account of the formalisation of these
preliminary concepts and ideas.

1.1 An example language

We can consider the set of all possible programs by describing the language in which
one can write the programs. For the purposes of explaining and demonstrating abstract
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES 3

interpretation, we use a simple imperative language very similar to the language “while”
used in [1]. The language supports tests, loops, arithmetic evaluation and assignments.
Programs are very simple and thus also simple to analyse, making the demonstration of
abstract interpretation much easier.

We choose to use flow charts instead of conventional abstract syntax, since although
it is possible to consider languages in terms of their abstract syntax (as in [1]) this is
not relevant to the theory of abstract interpretation. The flow chart representation can
be derived from a given program’s abstract syntax using a simple algorithm that is not
given here (this is essentially the approach in [1]). We instead state our example programs
directly in the flow chart representation which is based on that used in [2], [3], and [4].

Definition 1.1.1. A program is a directed graph: a set of nodes and a set of edges (arcs).
Nodes can be either assignments, tests, or joins.

Definition 1.1.2. The set of arcs is denoted Arc and the symbol r will range over arcs.

The type of node places limits on the number of arcs that are allowed to link to and from
that node.

• Assignments have one input and one output arc.

• Tests have one input and two output arcs.

• Joins have more than one input arc and one output arc.

Sometimes arcs will be only connected to a single node, either having no predecessor or
no successor. Such arcs will hereafter be called “entry” and “exit” arcs respectively. In
keeping with pragmatic programming languages, exactly one entry arc is allowed in the
program, but also multiple exit arcs are not allowed since it is possible to join together
proposed exit arcs with a join node. We also require the graph to be connected, since any
parts disconnected from the entry arc will have no effect on the computation.

Graphically, the assignment, test and join nodes are represented with rectangles, dia-
monds and filled circles respectively. Assignment nodes contain a text label that defines
exactly what assignment is being performed, and similarly for test nodes. The two exits
from a test node are distinctly labelled either T or F. For clarity, entry arcs are shown
to point from a place-holder triangle symbol (multimedia “play”). Likewise for exit arcs
point to a square symbol (multimedia “stop”). Thus there is no ambiguity when we con-
sider “partial” programs where empty successor / predecessor indicates that the rest of
the program has not been drawn.

Since our language is imperative, we must consider the “environment” - a mutable
variable store. This is represented by a function from the finite set of variables used in the
program to a set of values. We could use other representations here, but we can construct
maps very succinctly with lambda notation.

Definition 1.1.3. The finite set of variables used in the program is denoted by Var, and
x will range over variables.
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Definition 1.1.4. The set of values used in the program is denoted by the countable set
Z, and v will range over values.

Definition 1.1.5. The set of environments is denoted Envc = Var → Z, and envc will
range over these “concrete” environments.

Although numeric representations within computers are typically bounded (in my com-
puter an integer can range between −231 and 232−1), there are other data types which are
not bounded, e.g. lists. Some languages even have access to arbitrary precision numbers
for which there are no bounds (disregarding the physical memory limit of the machine).
For this reason we use an infinite set of values.

A program is said to have an initial environment which is used to parameterise the
execution. Some of the variables used in the program are mapped to initial values, the
rest are undefined and assumed to be assigned to before they are used. (The safety of the
language is not relevant for a summary of Abstract Interpretation.)

Definition 1.1.6. The initial environment is denoted env0 ∈ Envc.

We define an arithmetic and boolean expression syntax. We range over arithmetic and
boolean expressions with e ∈ AExp and b ∈ BExp respectively.

Definition 1.1.7. Syntax of arithmetic and boolean expressions:

e ::= x1 + x2 | x1 ∗ x2

b ::= x ≥ 0 | x < 0

We also have a semantic function for evaluating arithmetic expressions in the context of
an environment, and likewise a semantic function for evaluating boolean expressions.

Definition 1.1.8. Semantic functions for evaluation:

Ac : AExp → Envc → Z

Bc : BExp → Envc → {True,False}

Arithmetic evaluation is only done in the assignment node, and boolean evaluation only
at the test nodes. Note that this is a rather limited syntax for expressions, but it is
possible to recover the power of a more complex syntax by using many assignments or
tests. Numeric literals can be encoded by defining variables to evaluate to them, these
variables never being assigned to in the program. It is possible for create an expression
that simply evaluates a variable by using the expression x + 0. Our examples may assume
extensions to this syntax, for the sake of clarity.

Our semantics requires a notion of environment update, which is formalised as follows:

Definition 1.1.9. Environment update is denoted envc[x 7→ v]. The precise nature of the
environment env′

c = envc[x 7→ v] is:

env′

c(x
′) =

{

envc(x) if x 6= x′

v otherwise
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Evaluation Function Program Structure Condition

〈r, envc〉 〈r′, envc[x 7→ AcJeK(envc)]〉

〈r, envc〉 

{

〈r′, envc〉 if BcJbK(envc) = True

〈r′′, envc〉 if BcJbK(envc) = False

∀1 ≤ i ≤ n . 〈ri, envc〉 〈r′, envc〉

〈r, envc〉 envc

Table 1.1: Operational semantics of the flow chart language used in this report.

The execution of the program is formalised with an evaluation function that defines the
effect of a single step of execution. Since this is a function and not a general relation, the
language is deterministic. If the function returns another pair, the execution is incomplete,
otherwise we say the execution has terminated.

Definition 1.1.10. The evaluation function ( ) : Arc×Envc → (Arc×Envc)∪Envc.

The complete execution is therefore the transitive closure of this function, starting from
〈r0, env0〉 where r0 is the single entry arc of the program. This can be represented by
either a finite sequence of Arc×Envc pairs followed by a lone environment, or an infinite
sequence of Arc × Envc pairs. If the execution terminates, the result of the execution is
represented by the final lone environment.

The evaluation function itself is derived from the graph structure of the program,
obeying the rules in table 1.1. Note that it could have been possible to consider a single,
more general kind of node, one that takes multiple inputs, has multiple outputs, and can
change the state. This would have made the semantics rather more complex (although
more concise) since selection of an outward arc, updating of state, and merging of input
arcs would need to be done in a single expression.

Example 1.1.11. Factorial: An example implementation of the factorial algorithm is
shown in figure 1.2. If the program is run with parameter n = 6 until it stops, the result
will be c = 720. In terms of the notation, with initial environment satisfying env0(n) = 6,
transitive closure of 〈r1, env0〉 will contain an environment envc satisfying envc(n) = 1
and envc(c) = 720.
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Figure 1.2: The factorial algorithm represented with a flow chart.

1.2 The accumulating semantics as a basis for analysis

The conventional method for defining the semantics of programs (as in the previous section)
is concerned with knowing the result (or possibly the effect) of a particular execution of a
program. This is not suitable for program analysis for three reasons:

• We need to be assured of properties for all possible executions.

• We need information that relates to the various “parts” of the program code, not
just at its exit arcs.

• We need not just information relating to the incidental state of a partial execution,
but also the past and future of that execution. This is necessary for certain analyses
such as available expressions, well-definedness of variables, and liveness.

To address these issues an “accumulating” semantics is defined, that relates to the oper-
ational semantics, but retains more information than the progressive mutation of a single
environment along a single route of the flow chart. This semantics was originally defined
in [4] and termed the “static” semantics. In [7] it is called the “collecting” semantics,
whereas in [6] it is called the accumulating semantics, and this is the name used here.

The principle is the same however: We wish to define an analysis that is the basis for
all analyses, a middle ground that captures the style of the abstract, imprecise analyses
while being sufficiently general as to capture all program properties. This section shows
how this is possible, and how the accumulating semantics addresses the above issues.

For the first issue, we consider a set of environments, instead of a single environment,
at each invocation of the evaluation function. The environments attributed with the entry
arc, are therefore the set of all possible initial environments, and we consider the effect of
execution on each of them, at each step.
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What constitutes a “part” of the program code will vary from language to language.
The flow chart representation is attuned for this need – the set of places where we might
like to gather information is simply the set of arcs Arc.

Often with graphs, we consider nodes to represent stability, and the edges to represent
transition. With our flow chart representation of programs however, the opposite is true.
The arcs represent a stable environment, and an intermediate location during execution.
The nodes represent the transition to the next environment and location. Thus it is natural
to collect program properties at each arc. We simply keep a record of what environments
existed at each arc during the course of execution.

To record the history of a given execution, we can simply append each new environ-
ment on the end of a “trace”, and record the traces instead of the environments. During
execution we will only refer to the last (the most recent) element of this trace, in order to
decide how to proceed, but the history will be there for the purpose of analysis.

The same can be done for the future of the execution, but we have to completely reverse
the direction of the semantics, and consider the set of possible exit environments. In this
report we deal only with “forwards” analysis, that is gathering information relating to the
history of an execution.

In order to combine and implement these ideas formally, we need to define some pre-
liminary notations.

Definition 1.2.1. The set of lists of some set, X, is defined in an inductive manner:

[ x ] ∈ List(X) where x ∈ X

[ L | x ] ∈ List(X) where x ∈ X and L ∈ List(X)

The top form allows for the construction of a “singleton” list, whereas the bottom notation
allows for appending an element to the end of an existing list. The L notation allow us to
extract the last element from a list, formally:

Definition 1.2.2. Extraction of the last member of a list:

[ x ] = x

[ L | x ] = x

We use lists to define “traces” – records of the history of individual executions. A trace
records every arc that that the execution flows down, and what environment was present
at that time. The last member of the trace represents the current arc together with the
current environment – the same information used to determine the next computational
step in the operational semantics.

Definition 1.2.3. The set of traces is defined by Trace = List(Arc×Envc). The symbol
tr ranges over traces.

Definition 1.2.4. It is helpful to have a concise notation for selecting the environment
from a pair of type Arc× Envc. We use “.2”, e.g. 〈r, envc〉.2 = envc.
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It will be common to see the phrase tr.2 in this semantics, since this is the most recent
environment of a given trace.

We wish to create a semantics which records, for all possible values of input parameters,
at all arcs in the program, the set of partial executions that have reached that point.
This will require a radically different kind of semantics, but clearly also we will need to
consider a set of initial environments rather than the single environment used before, when
parameterising the program.

Definition 1.2.5. Initial environments: envs0 ∈ P(Envc)

To hold all the information required, the state of the new “computing machine” is ranged
over by c ∈ C = Arc → P(Trace). There is no concept of “current arc”; we consider all
arcs and inputs simultaneously. Indeed different paths may be taken by different traces,
at a given computational step, depending on the data in each initial environment.

Instead of the transitive closure of a state transition function (as in the operational
semantics), we are interested in computing the least fixed point of the equation c = acc(c).
This computing machine has initial state λr.∅ ∈ C and a state transition function of the
form acc : C → C, and as before, the definition of acc is defined by the program, but this
time obeys the rules in table 1.3.

The definition of acc has a different flavour to the function ( ). Firstly we are obvi-
ously dealing with sets of traces instead of individual environments, so we have to maintain
and look up information from these traces. Secondly, we translate information relating to
all the arcs to more information relating to all the arcs. This new information is the traces
generated as computations enter the arc by traversing the source node. We are no longer
concerned with where a given arc is pointing, when we iterate this machine. Instead we
need to know where it has come from. We now consider entry arcs (which we did not
before), and we no longer need to consider exit arcs, since there is nothing special about
the source of an exit arc.

We can formally describe the relationship between the operational and accumulating
semantics with the following statement, it can be seen to hold with the definitions given:

Lemma 1.2.6. For all c and envc ∈ envs0, and if the entry arc is r0:

[〈r0, envc〉] ∈ acc(c)(r0)

Proof: By definition of acc.

Intuitively this means that every possible initial environment will be represented by the
start of a trace at the entry arc.

Lemma 1.2.7. For all 〈r, envc〉, 〈r
′, env

′

c〉, c

〈r, envc〉 〈r′, env′

c〉 ⇐⇒ both of the following hold:

• tr = [〈r, envc〉] ∈ c(r) =⇒ [ tr | 〈r′, env′

c〉 ] ∈ acc(c)(r)
• tr = [ tr′ | 〈r, envc〉 ] ∈ c(r) =⇒ [ tr | 〈r′, env′

c〉 ] ∈ acc(c)(r)

Proof: By case analysis of ( ) and definition of acc.
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acc(c) = λr.























{

[ 〈r, envc〉 ] | envc ∈ envs0

}

if (1)
{

[ tr | 〈r, tr.2[x 7→ AcJeKtr.2]〉 ] | tr ∈ c(rp)
}

if (2)
{

[ tr | 〈r, tr.2〉 ] | tr ∈ c(rp) ∧ BcJbKtr.2 = True
}

if (3)
{

[ tr | 〈r, tr.2〉 ] | tr ∈ c(rp) ∧ BcJbKtr.2 = False
}

if (4)
⋃n

i=1

{

[ tr | 〈r, tr.2〉 ] | tr ∈ c(ri)
}

if (5)

(1)

(2)

(3)

(4)

(5)

Table 1.3: Definition of the state transfer function for the accumulating semantics.
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Intuitively this means that every computational step from traces accumulated in the com-
puting machine’s state will be accounted for when acc is next called. The reason for the
two bulleted expressions is that there are two possibilities for the formation of a trace
within c(r), it is a minor notational inconvenience and should not distract from the point
being made:

If acc(c) = c, all possible execution steps (and thus the entire execution for each
possible initial environment) have been accounted for, and the collection of execution
information is complete. This is why we are interested in the least fixed point. It is
important to realise that a property represents a possibility during execution. It is safe,
although not accurate, to suggest that more properties might apply, than actually do. The
converse on the other hand, is completely unacceptable. A fixed point represents safety,
since all the necessary properties have been accounted for. The least fixed point is the
most accurate.

Theorem 1.2.8. All and the only possible partial computation sequences in the operational
semantics for a program, starting with an initial environment from envs0, are each rep-
resented as a trace at the appropriate arc in the least fixed point of acc for that program.
Proof: induction on the length of computation sequences, using lemmas 1.2.6 and 1.2.7.

Example 1.2.9. Factorial: Recall the implementation of the factorial algorithm shown
in figure 1.2. With initial environments assigning the variable n to be 2, 3 and 4, the least
fixed point of acc is shown in figure 1.4. The format of the environment in the traces has
been invented for conciseness: If an environment maps n to 1 and c to 2, the format in
the figure would be <01,02>. Ud stands for “undefined”.

Recall that the purpose of defining an accumulating semantics was to allow the collection
of information that can be analysed to infer any desired program properties. We have
shown that the fixed point of the accumulating semantics is capable of providing exactly
this information. It reveals the precise detail of all executions that pass through a given
arc.

The accumulating semantics has a structure very similar to many analyses, although
it is unusual in that it has ultimate precision (and of course may never terminate – there
may be no fixed point). The state of the computing machine forms a lattice since Arc is
finite and the powerset of a set forms a lattice:
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r1: { [<1,(02,Ud)>],

[<1,(03,Ud)>],

[<1,(04,Ud)>] }

r2: { [<1,(02,Ud)> <2,(02,01)>],

[<1,(03,Ud)> <2,(03,01)>],

[<1,(04,Ud)> <2,(04,01)>] }

r3: { [<1,(02,Ud)> <2,(02,01)> <3,(02,01)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)>],

[<1,(02,Ud)> <2,(02,01)> <3,(02,01)> <5,(02,01)> <6,(02,02)> <7,(01,02)> <3,(01,02)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)> <3,(02,03)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)> <3,(02,03)> <5,(02,03)> <6,(02,06)> <7,(01,06)> <3,(01,06)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)> <3,(02,12)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)> <3,(02,12)> <5,(02,12)> <6,(02,24)> <7,(01,24)> <3,(01,24)>] }

r4: { [<1,(02,Ud)> <2,(02,01)> <3,(02,01)> <5,(02,01)> <6,(02,02)> <7,(01,02)> <3,(01,02)> <4,(01,02)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)> <3,(02,03)> <5,(02,03)> <6,(02,06)> <7,(01,06)> <3,(01,06)> <4,(01,06)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)> <3,(02,12)> <5,(02,12)> <6,(02,24)> <7,(01,24)> <3,(01,24)> <4,(01,24)>] }

r5: { [<1,(02,Ud)> <2,(02,01)> <3,(02,01)> <5,(02,01)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)> <3,(02,03)> <5,(02,03)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)> <3,(02,12)> <5,(02,12)>] }

r6: { [<1,(02,Ud)> <2,(02,01)> <3,(02,01)> <5,(02,01)> <6,(02,02)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)> <3,(02,03)> <5,(02,03)> <6,(02,06)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)> <3,(02,12)> <5,(02,12)> <6,(02,24)>] }

r7: { [<1,(02,Ud)> <2,(02,01)> <3,(02,01)> <5,(02,01)> <6,(02,02)> <7,(01,02)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)>],

[<1,(03,Ud)> <2,(03,01)> <3,(03,01)> <5,(03,01)> <6,(03,03)> <7,(02,03)> <3,(02,03)> <5,(02,03)> <6,(02,06)> <7,(01,06)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)>],

[<1,(04,Ud)> <2,(04,01)> <3,(04,01)> <5,(04,01)> <6,(04,04)> <7,(03,04)> <3,(03,04)> <5,(03,04)> <6,(03,12)> <7,(02,12)> <3,(02,12)> <5,(02,12)> <6,(02,24)> <7,(01,24)>] }

Figure 1.4: Fixed point of the accumulating semantics for the factorial example.
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Theorem 1.2.10. The accumulating semantics is a monotone framework:

Set: C = Arc → P(Trace)
Partial order: c1 vc c2 ⇐⇒ ∀r . c1(r) ⊆ c2(r)
Least upper bound: if C ′ ⊆ C, tcC

′ = λr.
⋃

{c(r)|c ∈ C ′}
Greatest lower bound: if C ′ ⊆ C, ucC

′ = λr.
⋂

{c(r)|c ∈ C ′}
Top: >c = λr.Trace

Bottom: ⊥c = λr.∅
Monotone transfer function: acc

Proof: Lemma 1.2.11 and the rest is straightforward because the lattice C is a
pointwise lifting of a powerset lattice.

Lemma 1.2.11. Monotonicity of acc: c1 v c2 =⇒ acc(c1) v acc(c2)

Proof: sufficient to prove for expanded (v). Note case (1) of acc(c)(r) is trivial
since it is constant with respect to c.

Prove ∀r, tr ∈ acc(c1)(r).tr ∈ acc(c2)(r).
For all r, let tr ∈ acc(c1)(r):
tr ∈ acc(c1)(r) ⇒
case (2-4):
tr ∈ { . . . | tr′ ∈ c1(rp) ∧ . . . } ⇒
tr ∈ { . . . | tr′ ∈ c2(rp) ∧ . . . } ⇒
tr ∈ acc(c2)(r) �

case (5):
tr ∈

⋃n

i=1
{ . . . | tr′ ∈ c1(ri) } ⇒

∃i.tr ∈ { . . . | tr′ ∈ c1(ri) } ⇒
∃i.tr ∈ { . . . | tr′ ∈ c2(ri) } ⇒
tr ∈

⋃n

i=1
{ . . . | tr′ ∈ c2(ri) } ⇒

tr ∈ acc(c2)(r) �

Intuitively, acc has to be monotone, since otherwise we would potentially lose trace infor-
mation as the analysis proceeds, and this would compromise the safety of the result (the
relationship with the operating semantics).

This concludes the study of the accumulating semantics. We use this theory heavily in
chapter 2, as a foundation from which analyses can be derived.

1.3 An example analysis

One can think of the accumulating semantics as a “very precise” analysis, but we are
interested in imprecise analyses, with useful termination properties. This chapter gives an
example of an imprecise analysis, although there is no proof yet that it is without error.
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In chapter 2 we will derive this very analysis from the accumulating semantics using
mathematical notation. First, however, it helps to simply state the analysis, as it may be
designed by an engineer, so we can see what it is we hope to reach.

The chosen analysis is a sign analysis. The technique is to abstract the computation
to only consider whether a variable is positive ≥ 0 or negative < 0, or potentially may
be either, at each arc. We also need to represent the possibility that we know nothing
about a variable, that is we have seen no evidence that it is positive or negative. Should
an analysis terminate in this state for a variable on an arc, it will mean that either the
variable was never defined, or the arc is never traversed.

Definition 1.3.1. The possible abstract values for a variable: Sign = P({+,−}) =
{∅, +,−,±}. This set is ordered with the subset relation and is therefore a lattice.

Definition 1.3.2. We use the function s to determine the sign of a value v ∈ Z:

s(v) =

{

+ if v ≥ 0
− if v < 0

Definition 1.3.3. The abstract environment : Enva = Var → Sign, enva ranges over
Enva.

Definition 1.3.4. The abstract state of the analysis’s computing machine: A = Arc →
Envc, the symbol a ranges over these states as c ranged over C in the accumulating
semantics.

We will need a few more preliminaries for the definition of the state transfer function,
int as defined in 1.5. We use the same set of initial environments as for the accumulat-
ing semantics, since this information is part of the program itself rather than part of the
semantics of the analysis. The conversion from concrete environments to abstract envi-
ronments is handled by int itself. The analysis proceeds by finding the least fixed point of
the function int just as with the accumulating semantics. The initial state of the analysis
is λrλx.∅.

Definition 1.3.5. Evaluation of arithmetic and boolean expressions in abstract environ-
ments: Aa : AExp → Enva → Sign and Ba : BExp → Enva → P({True,False}) is
defined by the following exhaustive tables:

AaJx1 + x2K ∅ + − ±
∅ ∅ ∅ ∅ ∅
+ ∅ + ± ±
− ∅ ± − ±
± ∅ ± ± ±

AaJx1 ∗ x2K ∅ + − ±
∅ ∅ ∅ ∅ ∅
+ ∅ + − ±
− ∅ − + ±
± ∅ ± ± ±

BaJbK b ≡ x ≥ 0 b ≡ x < 0
∅ ∅ ∅
+ {True} {False}
− {False} {True}
± {True,False} {True,False}
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int(a) = λr.























λx.
{

s(envc)(x) | envc ∈ envs0

}

if (1)
a(rp)[ x 7→ AaJeK(a(rp)) ] if (2)
λx.

⋃
{

enva(x) | (∀x′.enva(x
′) ⊆ a(rp)(x

′)) ∧ True ∈ BaJbKenva

}

if (3)
λx.

⋃
{

enva(x) | (∀x′.enva(x
′) ⊆ a(rp)(x

′)) ∧ False ∈ BaJbKenva

}

if (4)
λx.

⋃n

i=1
a(ri)(x) if (5)

(1)

(2)

(3)

(4)

(5)

Table 1.5: Definition of the state transfer function for the sign analysis.
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The analysis is a monotone framework just like the accumulating semantics, but since the
lattice is finite, every ascending chain will also be finite. Thus the computation of the least
fixed point by iteration of int, starting from ⊥a, will always terminate in finite time.

Definition 1.3.6. Sign analysis, as a monotone framework:

Set: A = Arc → Enva

Complete partial order: a1 va a2 ⇐⇒ ∀r, x . a1(r)(x) ⊆ a2(r)(x)
Least upper bound: if A′ ⊆ A, taA

′ = λrλx.
⋃

{a(r)(x)|a ∈ A′}
Greatest lower bound: if A′ ⊆ A, uaA

′ = λrλx.
⋂

{a(r)(x)|a ∈ A′}
Top: >a = λr.λx.±
Bottom: ⊥a = λrλx.∅
Monotone transfer function: int

Proof: The monotonicity of int, proceeds in a very similar manner to lemma 1.2.11.
The rest is straight forward since the lattice A is a powerset lattice lifted to two
finite sets.

Example 1.3.7. An example of sign analysis: Sign analysis is not interesting when applied
to the factorial example, so instead we consider a new example program, shown in figure 1.6.
We consider finite sets of values for the parameters of the program (x and y). The variable
x ranges between −10 and −5, whereas y varies between −10 and 10. We iterate the
analysis starting from the empty set of properties: λrλx.∅.

The progress of the analysis is shown in table 1.7. The format of the abstract environ-
ment has been invented for conciseness: If x is positive and y is negative, the displayed
abstract environment would be (+,−). Note that the analysis terminates in finite time,
whereas the accumulating semantics does not.

It is possible to generalise this analysis to use any kind of finite, “abstract” environment,
we have simply chosen to divide the range of values into two sets at zero. Any finite set
of equivalence classes on Z would do for ensuring termination, e.g. multiples of a specific
number (parity analysis).

In addition, we are not looking at any history or future information in the analysis,
such as might be done with a liveness analysis. The sign analysis was chosen because it is
simple and has an interesting behaviour with test nodes for our simple language.

In the next chapter we bring the accumulating semantics and the proposed analysis
together, show that the analysis can be derived from a simple specification, that it is safe
with respect to the accumulating semantics, and also that it is the most accurate sign
analysis possible.
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Figure 1.6: An example program for the sign analysis.

Arc 0 1 2 3 4 5 6 (FP)
r1 (∅, ∅) (−,±) (−,±) (−,±) (−,±) (−,±) (−,±)
r2 (∅, ∅) (∅, ∅) (−,±) (−,±) (−,±) (−,±) (−,±)
r3 (∅, ∅) (∅, ∅) (∅, ∅) (−,±) (−,±) (−,±) (−,±)
r4 (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (−,±) (−,±) (−,±)
r5 (∅, ∅) (∅, ∅) (∅, ∅) (−, +) (−, +) (−, +) (−, +)
r6 (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅)
r7 (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅)
r8 (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (−, +) (−, +) (−, +)
r9 (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (−, +) (−, +)

r10 (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (−, +)

Table 1.7: The results of the sign analysis, shown step by step up until the fixed point.



Chapter 2

Abstract Interpretation

In this chapter it is shown how one can derive the sign analysis from the accumulating
semantics with a simple specification. Recall that we have two lattices, A and C, represent-
ing the abstract and concrete worlds respectively. We have not yet defined a relationship
between them, and we have no formal description of what the essence of the sign analysis
is, from which to build the rest of the analysis.

2.1 The link between the accumulating semantics and

an imprecise analysis

Both of these problems can be solved by specifying a pair of functions, α and γ, that
translate meanings from each world to the other.

Definition 2.1.1. Abstraction and concretisation functions:

α : C → A

γ : A → C

The definition of γ is rather complex, since it has to pick up the pieces after information
has been necessarily lost, but α should be intuitive to understand. Later we will show how
to specify γ in terms of α. Recall that tr.2 selects the most recent environment from a
trace.

Definition 2.1.2. The sign analysis abstraction and concretisation functions:

α(c) = λrλx.{ s(tr.2(x)) | tr ∈ c(r) }
γ(a) = λr.{ tr | ∀x . s(tr.2(x)) ∈ a(r)(x) }

It is now evident that we can define a transfer function for our sign analysis lattice that
represents the imprecise analysis, using the accumulating semantics, and α and γ. All
that is required to build the analysis, is the specification of the program properties we are
interested in (the lattice), and their meaning, in terms of the accumulating semantics (α
and γ). We will compute the least fixed point of this function, using an iterative algorithm
starting from ⊥a.

17
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Definition 2.1.3. Sign analysis using abstract interpretation:

Set: A = Arc → Enva

Complete partial order: a1 va a2 ⇐⇒ ∀r, x . a1(r)(x) ⊆ a2(r)(x)
Least upper bound: if A′ ⊆ A, taA

′ = λrλx.
⋃

{a(r)(x)|a ∈ A′}
Greatest lower bound: if A′ ⊆ A, uaA

′ = λrλx.
⋂

{a(r)(x)|a ∈ A′}
Top: >a = λr.λx.±
Bottom: ⊥a = λrλx.∅
Monotone transfer function: λa.α(acc(γ(a)))

We must still ensure that the bounds operators, and the top and bottom are indeed what
they claim to be. For this abstract interpretation to work correctly, α and γ cannot simply
be any function, they must satisfy some properties to make this work. We expect the two
functions to be complementary, so we want α ◦ γ to be the identity function, but if γ ◦ α

is the identity function, then no precision can be lost by representation in the abstract
world. We need this imprecision since it allows us to use a finite A, and get guaranteed
termination of the analysis.

We do, however, want to make sure that γ ◦ α will never result in a less “safe” accu-
mulating state, where safety here is the the relation v. We need to be able to safely move
between the abstract and concrete worlds.

We also need α and γ to be monotone, so that the information in A is ordered in a
consistent way to C, that is that an approximation of safer data (with respect to vc), is
considered safer with respect to va. This also gives us the monotonicity of λa.α(acc(γ(a)))
which we need for termination within the monotone framework, or intuitively – through
the course of abstract interpretation we do not lose information that we have discovered
in previous iterations.

Definition 2.1.4. Monotonicity requirements for α and γ:

α is monotone: ∀c1 vc c2 . α(c1) va α(c2)
γ is monotone: ∀a1 va a2 . γ(a1) vc γ(a2)

Definition 2.1.5. Safety for α and γ:

No precision lost through concretisation: ∀a.α(γ(a)) = a

Precision lost safely through abstraction: ∀c.γ(α(c)) wc c

Theorem 2.1.6. Sign analysis α and γ are appropriate:

Proof: Monotonicity for α and γ can be seen immediately. Intuitively, more
traces means more signs and vice versa for α and γ respectively. Rest below:
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Prove: ∀a.α(γ(a)) = a

λrλx.{ s(tr.2(x)) | tr ∈ (λr′.{tr′|∀x′.s(tr′.2(x′)) ∈ a(r′)(x′)})(r) } =

λrλx.{ s(tr.2(x)) | tr ∈ {tr′|∀x′.s(tr′.2(x′)) ∈ a(r)(x′)} } =
λrλx.{ s(tr.2(x)) | ∀x′.s(tr.2(x′)) ∈ a(r)(x′) } =
λrλx.{ s(tr.2(x)) | s(tr.2(x)) ∈ a(r)(x) } =
λrλx.{ u | u ∈ a(r)(x) } =
λrλx.a(r)(x) =
a �

Prove: ∀c, tr, r . tr ∈ c(r) =⇒ tr ∈ γ(α(c))(r)
tr ∈ c(r) ⇒
∀x.s(tr.2(x)) ∈ α(c)(r)(x) ⇒
tr ∈ γ(α(c))(r) �

There is an area of mathematics that considers precisely this state of affairs. If α and
γ satisfy the above properties, then we have a Galois insertion, which is a specific kind
of Galois connection. In the next section we summarise some useful properties of Galois
insertions and connections.

2.2 Galois insertions and Galois connections

2.2.1 Galois connections

Usually a Galois connection (sometimes called an adjunction) is specified in the more
concise form:

Definition 2.2.1. Galois connection, for all a and c:

a va α(c) ⇐⇒ γ(a) vc c

We can prove that this definition holds for the requirements in 2.1.4 and 2.1.5: (This proof
from [7].)

Theorem 2.2.2. α and γ are a Galois connection:

Prove: a va α(c) =⇒ γ(a) vc c

a va α(c) (2.1.4) ⇒
γ(a) vc γ(α(c)) (2.1.5) ⇒
γ(a) vc c �

Prove: a va α(c) ⇐= γ(a) vc c

γ(a) vc c (2.1.4) ⇒
α(γ(a)) va α(c) (2.1.5) ⇒
a va α(c) �

But the best we can prove in the other direction (assuming α and γ are a Galois connection
and trying to derive 2.1.4 and 2.1.5) is that ∀a.α(γ(a)) va a, or intuitively, that C is an
approximation of A! (We still have the other properties.) The proof for this is also in [7],
but is similar to the above, so is omitted here. This relaxation of the properties of α ◦ γ)
is precisely the difference between the Galois connection and the Galois insertion, which
the next sub-section explores.
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2.2.2 Galois insertion

In a Galois insertion, A approximates C, but in a Galois connection, they are both ap-
proximations of each other. For the purposes of abstract interpretation, we have no use
for C approximating A, so we want to build a Galois insertion.

It is possible to convert a Galois connection between A and C to a Galois insertion
simply by removing the elements from A that are not represented by elements in C. This
is illustrated by the following fact:

Theorem 2.2.3. When α and γ are a Galois connection, they are a Galois insertion if
and only if α is surjective:

Prove: α(γ(a)) = a =⇒ ∃c.α(c) = a

Simply take c = γ(a),
which must exist
since γ is a
total function.

�

Prove: α(γ(a)) = a ⇐= ∃c.α(c) = a

α(c) = a (mono γ) ⇒
γ(α(c)) = γ(a) (GC) ⇒
γ(a) vc c (mono α) ⇒
α(γ(a)) va α(c) ⇒
α(γ(a)) va a (GC) ⇒
α(γ(a)) = a �

We need only re-define the lattice A so that the only elements remaining are those in the
range of α, and we have a Galois insertion. To see this more formally, we must define a Â,
v̂a, and Galois insertion α̂ γ̂ based on Galois connection γ α.

Definition 2.2.4. Refined state Â and associated Galois insertion: (The symbol â ranges
over Â.)

Â = { a | α(c) = a }
â1v̂aâ2 ⇐⇒ â1 va â2

∀c . α̂(c) = α(c) (i.e. α and α̂ are identical)
∀â . γ̂(â) = γ(â)

From these definitions we can show that α̂ γ̂ is a Galois connection, and also
since α̂ is surjective, a Galois insertion.

To see that the set Â is still a lattice, the monotonicity of α̂ and the fact that C is still
a lattice means that there will be an upper and lower bound of any subset of Â at α̂(>c)
and α̂(⊥c) respectively. In practice, it will be common to define an α that is surjective,
but this shows that a conversion can be made in all cases where this is not so.

2.2.3 Systematic construction of Galois connections

In [7] is described a number of ways in which Galois connections can be formed by con-
necting together other Galois connections. This means that results from simple “building
block” abstract interpretations can be composed without having to prove that the result
is valid. This could, in principle, be used by a compiler to autonomously assemble an
appropriate abstract interpretation that is guaranteed to be sound and complete.
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2.2.4 Defining γ from α

A very useful property of a Galois connection is that γ can be derived from α. We only
need to invent the more intuitive α, since we can simply derive γ from this. This also
shows that there is only one adjoining γ for α.

Theorem 2.2.5. If α and γ are a Galois connection, then: γ(c) =
⊔

c{c|α(c) va a}

Proof: Clearly, γ(c) =
⊔

c{c|c vc γ(c)}, but then since α and γ are a Galois
connection and c vc γ(c) ⇔ α(c) va a, it follows that γ(c) =

⊔

c{c|α(c) va a}.

Unfortunately it is not the case that any function α can be found an appropriate γ to
form a Galois connection, there are some α that are unsuitable. Ideally, we want a method
whereby it is possible to ensure α is definitely half of a Galois connection, without reference
to any γ. This is where the following result comes in useful. It means if α is completely
additive then it is part of a Galois connection, and thus γ can be found as above. The
following proof is from [7]:

Theorem 2.2.6. If and only if α and γ are a Galois connection, then α is completely
additive. For all A′ ⊆ A, c:

Prove: α(
⊔

a(A
′)) vc c ⇐⇒

⊔

c{α(a)|a ∈ A′} vc c

α(
⊔

a(A
′)) vc c (GC) ⇔

⊔

a(A
′) va γ(c) ⇔

∀a ∈ A′.a va γ(c) (GC) ⇔
∀a ∈ A′.α(a) vc c ⇔
⊔

a{α(a)|a ∈ A′} vc c �

Now we will use this result to define γ from α in the sign analysis, by first proving α is
completely additive. Unfortunately proofs about the sign analysis, despite it being quite
simple, are rather long and technical, even this simple result.

Lemma 2.2.7. α is completely additive. Recall that α(c) = λrλx.{s(tr.2(x))|tr ∈ c(r)}.
For all C ′ ⊆ C:

Prove: ∀a, x, u . u ∈ α(
⊔

c C ′)(r)(x) ⇐⇒ u ∈
⊔

a{α(c′)|c′ ∈ C ′}(r)(x)
u ∈ α(

⊔

c C ′)(r)(x) ⇔
u ∈

⋃

({s(tr.2(x))|tr ∈ (
⊔

c C ′)(r)}) ⇔
∃tr ∈ (

⊔

c C ′)(r) . u = s(tr.2(x)) ⇔
∃c′ ∈ C ′, tr ∈ c′(r) . u = s(tr.2(x)) ⇔
∃c′ ∈ C ′, u ∈ {s(tr.2(x))|tr ∈ c′(r)} ⇔
∃c′ ∈ C ′, u ∈ α(c′)(r)(x) ⇔
u ∈

⋃

{α(c′)(r)(x)|c′ ∈ C ′} ⇔
u ∈

⊔

a{α(c′)|c′ ∈ C ′}(r)(x) �
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Theorem 2.2.8. γ, as defined in terms of α, resolves to the definition given above:

Prove:
⊔

c{ c | α(c) va a } = λr.{ tr | ∀x . s(tr.2(x)) ∈ a(r)(x) }
⊔

c{ c | α(c) va a } =
⊔

c{ c | (λr′λx.{s(tr.2(x))|tr ∈ c(r′)}) va a } =
⊔

c{ c | (∀r′, x . {s(tr.2(x))|tr ∈ c(r′)} ⊆ a(r′)(x) } =
λr.

⋃

{ c(r) | (∀r′, x . {s(tr.2(x))|tr ∈ c(r′)} ⊆ a(r′)(x) } =
λr.

⋃

{ c(r) | (∀x . {s(tr.2(x))|tr ∈ c(r)} ⊆ a(r)(x) } =
λr.

⋃

{ trs | ∀x . {s(tr.2(x))|tr ∈ trs} ⊆ a(r)(x) } =
λr.

⋃

{ trs | ∀x . s(tr.2(x)) ∈ a(r)(x) ∧ tr ∈ trs } =
λr.{ tr | ∀x . s(tr.2(x)) ∈ a(r)(x) } �

Now we have the analysis defined by the monotone framework in 2.1.3, we can show that
it is indeed the same as the analysis from section 1.3. In the next section, we will reduce
the function λa.α(acc(γ(a))) into the implementable form given earlier.

2.3 Implementing the abstract interpretation

Our current definition of the monotone transfer function, λa.α(acc(γ(a))), is problematic
to implement, since it contains infinite sets of traces, and is also very complex compared to
the definition of int : A → A given in section 1.3. However, using standard set theory, we
can expand the definitions of α, γ and acc to produce a large expression which simplifies
into the definition from section 1.3.

α(acc(γ(a))) =

We shall use a version of γ from theorem 2.2.8.

α(acc(λr′.
⋃

{ trs | ∀x′ . {s(tr.2(x′))|tr ∈ trs} ⊆ a(r′)(x′) })) =

Now, we have to deal with acc (as defined in table 1.3) on a case for case basis, the most
simple case is for entry arcs, (1). This does not even use the result of γ.

α(λr′.{ [〈r′, envc〉] | envc ∈ envs0 }) =(1)

And through expansion of α, we get:

λrλx.{ s(tr.2(x)) | tr ∈ (λr′.{ [〈r′, envc〉] | envc ∈ envs0 })(r) } =
λrλx.{ s(tr.2(x)) | tr ∈ { [〈r, envc〉] | envc ∈ envs0 } }

=(1)

Since we only want tr.2(x) from the traces, we can simplify to:

λrλx.{ s(envc(x)) | envc ∈ { env′

c| env′

c ∈ envs0 } } =(1)
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The second nesting of braces is now redundant:

λrλx.{ s(envc(x)) | envc ∈ envs0 } �(1)

The next case we consider is (2):

α(λr.{ [ tr | 〈r, tr.2[x 7→ AcJeKtr.2]〉 ]

| tr ∈ (λr′.
⋃

{trs | ∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(r′)(x′)})(rp) })
=(2)

Which simplifies immediately to:

α(λr.{ [ tr | 〈r, tr.2[x 7→ AcJeKtr.2]〉 ]

| tr ∈
⋃

{trs | ∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(rp)(x
′)} })

=(2)

α(λr.{ [ tr | 〈r, tr.2[x 7→ AcJeKtr.2]〉 ]

| tr ∈ trs ∧ ∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(rp)(x
′) })

=(2)

Now we expand α (taking care not to clash the x that stands for a given variable, with
the specific x that is being assigned to):

λrλx′′.{ s(tr′′.2(x′′)) | tr′′ ∈ { [ tr | 〈r, tr.2[x 7→ AcJeKtr.2]〉 ] | tr ∈ trs ∧

∀x′.{s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(rp)(x
′) }}

=(2)

And since we are only dealing with tr.2:

λrλx′′.{ s(envc(x
′′)) | envc ∈ { env′

c[x 7→ AcJeKenv′

c] | env′

c ∈ envsc ∧
∀x′.{s(env′′

c (x
′))|env′′

c ∈ envsc} ⊆ a(rp)(x
′) }}

=(2)

We now deal with the two cases x′′ = x and x′′ 6= x. First the latter case, where, as far as
x′′ is concerned, env′

c[x 7→ AcJeKenv′

c] = env′

c:

λrλx′′.{ s(envc(x
′′)) | envc ∈ envsc ∧

∀x′ . {s(env′′

c(x
′))|env′′

c ∈ envsc} ⊆ a(rp)(x
′) }

=(2a)

And since we are only concerned with x′′ in envsc:

λrλx′′.{ s(envc(x
′′)) | envc ∈ envsc ∧

{s(env′′

c(x
′′))|env′′

c ∈ envsc} ⊆ a(rp)(x
′′) }

=(2a)

And since we are selecting all members from the set of all objects that obey a certain
property, we can reduce this to:

λrλx′′.{ s(envc(x
′′)) | s(envc(x

′′)) ∈ a(rp)(x
′′) } =(2a)

Substituting s(envc(x
′′)) for u, gives:



CHAPTER 2. ABSTRACT INTERPRETATION 24

λrλx′′.{ u | u ∈ a(rp)(x
′′) } =(2a)

λrλx′′.a(rp)(x
′′) =(2a)

Since this is the case where x′′ 6= x:

λrλx′′.a(rp)[x 7→ AcJeK(a(rp))](x
′′) =(2a)

Which means the same thing as:

λr.a(rp)[x 7→ AcJeK(a(rp))] �(2a)

And now the harder case, x′′ = x where env′

c[x 7→ AcJeKenv′

c](x
′′) = AcJeKenv′

c.

λrλx.{ s(AcJeKenv′

c) | env′

c ∈ envsc ∧
∀x′.{s(env′′

c(x
′))|env′′

c ∈ envsc} ⊆ a(rp)(x
′) }

=(2b)

We can introduce another object in the expression, enva which is simply an alias: enva =
λx′′.{s(envc(x))|envc ∈ envsc}:

λrλx.{ s(AcJeKenv′

c) | enva = λx′′.{s(envc(x))|envc ∈ envsc} ∧
env′

c ∈ envsc ∧
∀x′.enva(x

′) ⊆ a(rp)(x
′) }

=(2b)

It was inevitable that at some stage we would have to deal with the relationship between
Ac and Aa, that is concrete arithmetic evaluation and the abstract approximation of the
same. It can be seen, through an exhaustive check of the (finite) Aa function, that the
following expression holds. To understand this expression intuitively, imagine that enva

defines a set of concrete environments envsc, and that Aa examines each member of envsc

and computes the sign of the concrete evaluation for that environment.
To check this expression, we consider only environments (both enva and envc) that

resolve the variables x1 and x2 used in the arithmetic expression e. This is easily lifted to
the general case, since no other variables affect the result of either concrete, or abstract
arithmetic evaluation.

We consider the cases where the set of environments is empty, contains only positive,
only negative, or both positive and negative values for each x1 and x2, and we must do this
for each arithmetic operator. For the abstract environment, this is just the enumeration
of all possible cases, and for the concrete environment, it is a partition of the space of
possible sets of environments into a finite number of classes.

Lemma 2.3.1. Concrete and abstract arithmetic evaluation:

AaJeK(enva) = { s(AcJeK(envc)) | enva = λx.{s(envc(x))|env
′

c ∈ envsc} ∧ envc ∈ envsc }

This result can now be used to simplify our abstract interpretation to use the abstract
arithmetic evaluation operator instead of the concrete one. To make this clearer, the
expression is reformulated in the following way:
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λrλx.
{

u
∣

∣ u ∈ { s(AcJeKenvc) | enva = λx′′.{s(envc(x))|envc ∈ envsc} ∧
envc ∈ envsc } ∧

∀x′.enva(x
′) ⊆ a(rp)(x

′)
}

=(2b)

This allows the clean replacement of the inner set:

λrλx.{ u | u ∈ AaJeK(enva) ∧ ∀x′.enva(x
′) ⊆ a(rp)(x

′) } =(2b)

Which is the same thing as:

λrλx.
⋃

{AaJeK(enva) | ∀x′.enva(x
′) ⊆ a(rp)(x

′) } =(2b)

Now, in a trick similar to that used at the beginning of lemma 2.2.5, since Aa is monotonic
with respect to the ordering on environments defined by ∀x.enva(x) ⊆ env′

a(x), the union
defined above is actually equivalent to AaJeK applied to the least upper bound of the set
of abstract environments, i.e. a(rp).

λrλx.AaJeK(a(rp)) =(2b)

Since this is the case where x′′ = x:

λrλx′′.a(rp)[x 7→ AcJeK(a(rp))](x
′′) =(2b)

Which means the same thing as:

λr.a(rp)[x 7→ AcJeK(a(rp))] �(2b)

Now for case (3) and (4), which are identical except for the True and False constraints
on the result of boolean expression evaluation on the considered environment.

α(λr.{ [tr|〈r, tr.2〉] | tr ∈ (λr′.
⋃

{ trs | ∀x′.{s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(r′)(x′) })(rp)
∧ BcJbKtr.2 = True })

=(3,4)

Which immediately simplifies to:

α(λr.{ [tr|〈r, tr.2〉] | tr ∈
⋃

{ trs | ∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(rp)(x
′) } ∧

BcJbKtr.2 = True })
=(3,4)

α(λr.{ [tr|〈r, tr.2〉] | tr ∈ trs ∧ ∀x′.{s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(rp)(x
′) } ∧

BcJbKtr.2 = True })
=(3,4)

Now, we expand α

λrλx.{ s(tr′′.2(x)) | tr
′′ ∈ { [tr|〈r, tr.2〉]

| tr ∈ trs ∧ ∀x′.{s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(rp)(x
′) } ∧

BcJbKtr.2 = True } }

=(3,4)
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And as with the previous two cases, we are dealing with environments, not traces, so the
record of past execution steps can be stripped away:

λrλx.{ s(envc(x)) | ∀x′.{s(env′

c(x
′))|env′

c ∈ envsc} ⊆ a(rp)(x
′) ∧

envc ∈ envsc ∧ BcJbKenvc = True }
=(3,4)

We define enva as before:

λrλx.{ u | u ∈ enva(x) ∧ enva = λx′′.{s(env′

c(x
′′))|env′

c ∈ envsc} ∧
∀x′.enva(x

′) ⊆ a(rp)(x
′) ∧

envc ∈ envsc ∧ BcJbKenvc = True }
=(3,4)

Now it is time to deal with translating the concrete form of boolean evaluation across
a potentially infinite set of environments, into the more computable abstract evaluation
across a single abstract environment. This is slightly easier than the equivalent arithmetic
equivalence, but still very similar. Like before, we inspect the definition of Ba to ensure
the following equivalence is met:

Lemma 2.3.2. Concrete and abstract boolean evaluation:

BaJbK(enva) = { BcJbK(envc) | enva = λx′′.{s(env
′

c(x
′′))|env

′

c ∈ envsc} ∧ envc ∈ envsc }

Like before, we need only consider environments that define the variables required by the
boolean expression, but since boolean expressions are simpler than arithmetic ones, only
environments mapping a single variable are considered.

We partition the possible sets of concrete environments into four classes: where there
are no environments defined at all, where every environment defines x as positive, likewise
where every x is negative, or where there are environments for both polarities within
the set. We need to consider the results of boolean evaluation for both kinds of boolean
expressions.

Using this identity, we can further simplify the abstract interpretation, but first let us
change it so that the substitution is clearer.

λrλx.{ u | u ∈ enva(x) ∧ ∀x′.enva(x
′) ⊆ a(rp)(x

′) ∧
True ∈ { BcJbK(envc) | enva = λx′′.{s(env

′

c(x
′′))|env

′

c ∈ envsc} ∧ envc ∈ envsc } }
=(3,4)

Now we substitute BaJbK(enva):

λrλx.{ u | u ∈ enva(x) ∧ ∀x′.enva(x
′) ⊆ a(rp)(x

′) ∧ True ∈ BaJbK(enva) } =(3,4)

The last step is to notice that we are collecting together all the members of a set that fits
a certain predicate, so this is equivalent to the following:

λrλx.
⋃

{ enva(x) | ∀x′.enva(x
′) ⊆ a(rp)(x

′) ∧ True ∈ BaJbK(enva) } �(3,4)
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The one remaining case is the simpler case of the join node.

α(λr.{
⋃n

i=1
{ [ tr | 〈r, tr.2〉 ]

| tr ∈
⋃

{ trs | ∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(ri)(x
′) } }})

=(5)

Flattening the union as with the previous cases:

α(λr.{
⋃n

i=1
{ [ tr | 〈r, tr.2〉 ]

| tr ∈ trs ∧ ∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(ri)(x
′) }})

=(5)

Now we expand α:

λrλx.{ s(tr′′.2(x)) | tr
′′ ∈

⋃n
i=1

{ [ tr | 〈r, tr.2〉 ]
| tr ∈ trs ∧

∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(ri)(x
′) } }

=(5)

tr′′ is a member of a union if and only if it is a member of one of the sets considered:

λrλx.{ s(tr′′.2(x)) | tr
′′ ∈ { [ tr | 〈r, tr.2〉 ]

| tr ∈ trs ∧

∀x′ . {s(tr′.2(x′))|tr′ ∈ trs} ⊆ a(ri)(x
′) } }

=(5)

Since we only extract the most recent environment from the traces considered:

λrλx.{ s(envc(x)) | envc ∈ envsc ∧ ∀x′.{s(env
′

c(x
′))|env

′

c ∈ envsc} ⊆ a(ri)(x
′) } =(5)

We now define enva as done in the previous cases:

λrλx.{ u | u ∈ enva(x) ∧ ∀x′.enva(x
′) ⊆ a(ri)(x

′) } =(5)

And adding the union brings us to the correct definition:

λrλx.
⋃n

i=1
{ enva(x) | ∀x′.enva(x

′) ⊆ a(ri)(x
′) } �(5)

This shows that the monotone transfer function defined in 2.1.3 is equivalent to the one
from 1.3.6, and since both computational machines start with the same initial state, the
analyses are equivalent.



CHAPTER 2. ABSTRACT INTERPRETATION 28

2.4 Safety and precision results

To show that the abstract interpretation is a safe approximation of the accumulating
semantics, we can prove the following lemma, which says that a step in the accumulating
semantics is always smaller than (and therefore less safe, but more precise than) a step in
the analysis. This is a general result that will apply to any abstract interpretation defined
in terms of α and γ.

Theorem 2.4.1. Safety of analysis, where int = λc.α(acc(γ(c)) as proven above.

∀c.acc(c) vc γ(int(α(c)))

Proof: definition 2.1.5 and equivalence of int with the abstract interpretation.

To show that the abstract interpretation is the most precise result, we show that there is
no safe analysis that is strictly better than int. This proof comes from [6].

Theorem 2.4.2. int is the most precise analysis: Assume f : A → A is a safe monotone
transfer function (i.e. ∀c.acc(c) vc γ(f(α(c))), and it is “more precise than” int, i.e.
∃a.f(a) @a int(a). Then this leads to contradiction:

Proof:

We know that since f is safe:

∀c.acc(c) vc γ(f(α(c)))

and by substitution of c and by theorem 2.2.5, we know that:

∀a.α(acc(γ(a)))) va f(α(γ(a)))

and by definition 2.1.5, we know that:

∀a.α(acc(γ(a)))) va f(a)

and since this is the definition of int, this contradicts ∃a.f(a) @a int(a)!

This concludes the study of abstract interpretation in its pure form. Next we augment
an abstract interpretation with a widening operator in order to get better termination
properties while retaining safety.
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Widening

Each analysis is a simple state machine, with an initial state in A, and a monotone transfer
function int : A → A. Since the function is monotone and A is a lattice, we can imagine
the analysis taking a path up the lattice, during the course of its many iterations. It will
always ascend, since it can never descend due to its monotonicity, and if it remains still,
the analysis will terminate and thus so will the path.

If the lattice is finite, then no matter what path is taken by the analysis, the path will
always have finite length, and thus every analysis will terminate. The sign lattice in the
sign analysis is finite, since the number of arcs in a program, the number of variables in a
program, and the number of possible sets of signs are finite. If we had considered, rather
than signs, an uncountable approximation of the set of values, then this would no longer
be the case.

If we cannot guarantee an analysis will terminate, then it is not suitable for the static
analysis of code such as used for compiler optimisations and error checking.

It is useful to have a method whereby a non terminating approximate analysis can be
converted into an even more approximate terminating analysis. We want a flexible way
of doing this while retaining safety. One simple idea that can be used here is to choose a
point that is a finite distance from the base of the lattice, where upon we will jump right to
the top of the lattice. This is analogous to entering a room containing an infinite number
Computer Scientists, seeing that some finite number are male, and then terminating the
analysis, concluding that there is the possibility that all of them are male.

This chapter summarises the theoretical machinery for implementing such ideas within
any arbitrary analysis.

3.1 Widening operators

To capture the effect of artificially jumping forward during an analysis in a general way,
we can think of a binary operator (O) which is inserted into the analysis’s computational
machine in the following way. We can think of the nth step of the analysis being an and
a0 as the initial state of the analysis (the empty set of inferred properties). Inductively,
the nth state is an = int(an−1). This is just a formalisation of the idea of a computing

29
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machine with an initial state and a state transfer function. We change this definition to
introduce the widening operator like so:

Definition 3.1.1. Analysis augmented with widening operator:

(O) : (A × A) → A

an = int(an−1)Oan−1

This means each new state is filtered through the widening operator, and the widening
operator looks at both the current state, and the proposed next state, and can adjust the
next state however it pleases. For this to be safe, the following must hold:

Definition 3.1.2. Safe widening operators must satisfy:

∀a1, a2 . a1Oa2 wa a1

The “accelerated” state must preserve any properties that were inferred by the analysis,
and this requirement ensures this happens. The way that the operator is used ensures
that a1 w a2. Simply taking the widening operator to be the least upper bound operator
produces the original analysis, so this technique generalises the abstract interpretation
framework. It gifts us with the freedom to leap, where before, we could only cautiously
tread.

The manner in which we can use this to force termination for infinite lattices is that
we can use the widening operator to behave in the normal way until it reaches a certain
point, then define it to return the top of the lattice. In general, we can make the widening
operator have a finite range.

The approach taken in [2], [3] and [4] is to mark certain arcs to be “widening” arcs,
such that each cycle in the flow chart has at least one widening arc. This is inspired by the
knowledge that it is the loops in the program that create the problem of non-termination
of the analysis, and by only treating these loops specially, we can minimise the damage
done to the precision of the analysis.

It seems, that this does not make a huge amount of difference, since as soon as you
artificially distort the state of an analysis at one arc, this distortion will propagate to the
rest of the analysis as the flow of the program dictates. It will in some cases, produce
a more accurate analysis, for instance if the program happens to step over the threshold
after all its loops, on the way to its exit arc, but these situations are in the minority.

3.2 Interval Example

An analysis which abstracts the set of values held by a variable to the range in which they
lie, is called an interval analysis. This analysis can be defined via abstract interpretation,
but first a few auxiliary definitions that are largely intuitive:
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Definition 3.2.1. Notation for interval objects: (l ranges over intervals)

Augmenting the set of values: v ∈ Z
∞ = Z ∪ {∞,−∞}

The set of all intervals: l ∈ Int = (Z∞ × Z
∞) ∪ {[∅, ∅]}

Constructing an interval: [v1, v2] ∈ Int

Constructing an “empty” interval: [∅, ∅] ∈ Int

Decomposing an interval: b[v1, v2]c = v1, d[v1, v2]e = v2

(not defined for empty intervals)
Least upper bound of integers: max : P(Z∞) → (Z∞ ∪ ∅)

Greatest lower bound of integers: min : P(Z∞) → (Z∞ ∪ ∅)
Interval comparison: l1 4 l2 ⇐⇒ (bl1c ≥ bl2c

∧

dl1e ≤ dl2e)
∨

l1 = [∅, ∅]
Interval least upper bound:

b
L′ = [min{blc|l ∈ L′}, max{dle|l ∈ L′}]

Interval greatest lower bound:
c

L′ = [max{blc|l ∈ L′}, min{dle|l ∈ L′}]
(or [∅, ∅] if there is no overlap)

Definition 3.2.2. The interval analysis abstraction and concretisation functions:

α(c) = λrλx.[ min{tr.2(x)|tr ∈ c(r)}, max{tr.2(x)|tr ∈ c(r)} ]
γ(a) = λr.{ tr | a(r)(x) 6= [∅, ∅] ∧ ∀x . ba(r)(x)c ≤ tr.2(x) ≤ da(r)(x)e }

Definition 3.2.3. Interval analysis using abstract interpretation:

Set: A = Arc → Var → Int

Complete partial order: a1 va a2 ⇐⇒ ∀r, x . a1(r)(x) 4 a2(r)(x)
Least upper bound: if A′ ⊆ A, taA

′ = λrλx.
b
{a(r)(x)|a ∈ A′}

Greatest lower bound: if A′ ⊆ A, uaA
′ = λrλx.

c
{a(r)(x)|a ∈ A′}

Top: >a = λr.λx.[−∞,∞]
Bottom: ⊥a = λrλx.[∅, ∅]
Monotone transfer function: λa.α(acc(γ(a)))

This analysis has an infinite state, since Int is infinite, since Z
∞ is infinite. There is

no guarantee that the analysis will terminate, and a trivial example of a program which
causes the analysis to run indefinitely, is a simple infinite loop which constantly increments
a variable, starting with 0.

In that situation, the interval abstraction for that variable will keep increasing in di-
ameter, but will never reach [0,∞], which is clearly the only fixed point in can reach. We
can define a widening operator to make the analysis “give up” after a certain amount of
“fuel” has been used, and after that point it will return a fixed point and this will cause
the analysis to stabilise and terminate.
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Definition 3.2.4. A widening operator for the interval analysis: (the parameter fuel is
constant, and used to tune the analysis)

a1O
fuel

a2 = λrλx.

{

a1(r)(x) if a1(r)(x) 4 fuel

[−∞,∞] otherwise

Note that this widening operator, when wrapped around the state transfer function as
shown in definition 3.1.1, has a finite range (as long as the specified fuel is a finite interval).
This means that no matter what strictly ascending path is taken through this range by
the analysis, it must terminate in a finite number of steps.

The analysis, when applied to the example infinite loop program described above, will
iterate until fuel is reached, and then immediately jump to [−∞,∞] and terminate. This
technique is very costly in terms of accuracy since there is no way to investigate intervals
greater than the limited specified. The limit is flexible however, and without losing safety,
the compiler could tune it for the situation at hand.

This widening operator does not discriminate between arcs when performing the widen-
ing itself, so there is room for slightly more precision if a slightly more complex definition,
that only widens the path of loops, is used. In this case the range of the iteration will not
be finite in all cases, and we must show through other means that the iteration will always
terminate.

There are many possible ways to use widening operators. In general we will have to
prove that a widening operator really does ensure analysis computation sequences reach
a fixed point in finite time. This proof will depend on what kind of widening operator is
being used.
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Conclusion

We have described a simple language, motivated and defined its accumulating semantics,
and suggested that this forms the foundation from which a large number of analyses
can be derived. We described a sign analysis, and showed how it can be derived safely
and completely from the accumulating semantics using mathematical notation. We have
motivated the use of widening operators to place fixed upper limits on the number of
iterations permitted in an analysis, and demonstrated how this gives an interval analysis
guaranteed termination at considerable expense of precision.

This report is a summary and consolidation of what was thought to be the most im-
portant information from several sources. The chapter “abstract interpretation” in [7]
contained a lot of theoretical results about Galois connections and widening, the most rel-
evant of which has been presented here. The article [6] contains a very verbose introduction
to abstract interpretation. It provided the context and intuition that [7] lacked.

The original papers [2], [3] and [4] provided the most concrete description of abstract
interpretation, since they concentrated on a simple language and simple accumulating
semantics. They also contained the most formal definition of the accumulating semantics
out of the source material.

In this report, abstract interpretation has been considered with a very practical fo-
cus, and this limits the generality of the results presented. In order to present a fully
worked example, the language used had to be very simple, and thus lacks many features
considered necessary for conventional languages, such as dynamic binding and complex
data structures. Considering these features in the context of abstract interpretation is
non-trivial.

Despite this, the principle of abstract interpretation, i.e. the approximation of program
semantics (using an accumulating semantics and a Galois insertion) is applicable in many
languages and computational devices, from functional languages to hardware. Recent
work has used abstract interpretation for static analysis of programs written in a cut-
down version of the C language for the Aerospace industry [5]. Abstract interpretation
is thus a powerful tool for static program analysis, since it combines safety with good
termination properties, and manageable imprecision.
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