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Abstract

Intersection type systems are introduced as a solution to limitations of the Curry Type Sys-
tem for the lambda calculus. It is summarised how Forsythe uses an intersection type system
effectively, for the purposes of typing combinations of expressive language features that are used
to represent conventional language features. We study some intersection type systems with type
variables, which are generalisations of the Curry Type System, explain how they are expressive,
but how undecidability renders them unsuitable for practical use in their unrestricted form.
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Chapter 1

Introduction to Intersection Types

Traditional and well understood type systems like the Curry Type System, or the ML Type
System, have limitations in the scope of correct programs that they can type. Since our interest
is motivated by shortcomings in other systems, it is of interest to quickly review both the purpose
of type systems in general, and the limitations of “conventional” type systems. Then it will be
shown how extending the Curry Type System with intersection types provides a type system that
does not exhibit these limitations.

1.1 Some Typical Features and Motivations of Type Systems

The motivation for type systems stems from the need for static reasoning about programs, par-
ticularly to determine correctness, but also to allow certain optimisations in the compilation
process. Some syntactically valid programs can be thought of as “semantically invalid” - for
example if their meaning is not specified by the language definition. A suitable type system
can be used to detect semantically invalid programs automatically. Type systems are necessarily
designed to support the syntax and uphold the defined semantics of a specific language. Despite
this, we can make a few general and typical observations about them.

Types can be thought of in terms of the set of constant values that agree with them. Typically
the types of literals and such are defined in keeping with the implementation’s representation of
these values. To type an expression, a syntax which may evaluate during the course of program
execution, it is usual that the expression agrees with a type if all the possible evaluations of the
expression agree with that type, not making any unwarranted assumptions about the values of
any variable data that might be referenced by the expression.

This is useful because it is likely that a language allows an expression to be used in place
of a literal, specifying that the expression is evaluated to produce a concrete value, at runtime,
when such a value is required by the evaluation of its context. Naturally then, we will allow
any expression to form the sub-syntax in this context, if we can guarantee that the expression
will evaluate to an allowed value, so thus we require the expression to agree with a certain
type. This places a constraint on what expressions are allowed as sub-syntax. This property of
a type system, where an expression’s hypothetical evaluation result will always agree with the
expression’s type, is called the “subject reduction property” and is highly desirable in a type
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CHAPTER 1. INTRODUCTION TO INTERSECTION TYPES 3

system for any language with the feature described.
Traditionally, the type system has not evaluated the expression (in the conventional sense) to

determine the set of possible results, but has inferred some conservative estimate of agreement
using the syntax of the expression, and a predefined set of syntax directed rules. The set of rules
is compatible with the semantics of the language. This results in a general assertion about the
character of the expression’s behaviour, and its invariance to runtime state gives us the universal
certainty we desire:

“For all possible inputs and executions, we know this about the run-time behaviour: . . . ”

Because the rules in a type system are simple and syntax directed, the type inference (the de-
termining of a type that code agrees with) is efficient and decidable, and can thus be performed
autonomously by a compiler. Inventing a type system is a creative process, and there might be
many type systems that are consistent for a language. Some of them might not be able to type
some important programs, and also some might not have the useful properties we require. In
particular, it is a challenge to define a type system with enough scope and useful features with-
out losing decidability, which is essential if the type inference mechanism is to be autonomous
within a compiler.

There is little more that can be said about type systems in general, so we shall visit the Curry
Type System for the lambda calculus, as it the foundation for the Intersection Type System.

1.2 The Curry Type System for the Lambda Calculus

Here we demonstrate the notation used in this document, and introduce the type system whose
limitations will be overcome when we extend it with intersection types.

The system is simple, well-known and well-understood, and despite being defined for the
lambda calculus, can be extended to form the type systems that are used in practical program-
ming languages today. A lot of the information in this section is summarised from the course
“Type Systems for Programming Languages”, and its lecture notes, [10].

Note that the original motivations given for type systems (detecting erroneous programs and
efficiency) do not apply here, since there are no “stuck” lambda terms (assuming infinite evalua-
tion is valid), and thus a type system should type all lambda terms. Also, efficiency is irrelevant
when dealing with a mathematical formalisation. Nevertheless, it is interesting to study type
systems for the lambda calculus because of its simple definition, and the fact that many features
of conventional programming languages have analogies within the lambda calculus. This gives
us confidence that our results here will scale to more complex languages.

Definition 1.1. Syntax of the lambda calculus: E ::= x | (E1E2) | (λx.E)

The categories are named ‘term variable’ ‘application’ and ‘abstraction’ respectively. To im-
prove readability of the concrete syntax, the following conventions are used: Application binds
to the left and binds tighter than abstraction, consecutive abstractions are merged together, and
redundant brackets are removed.
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Definition 1.2. Semantics of the lambda calculus: (λx.M)N −→β M[N/x]

This definition of reduction models computation and is Turing-complete. M[N/x] stands for the
syntax of M but for each term variable x in M, N is substituted in its place. The syntax (λx.M)N
is called a redex, and where multiple redexes exist as sub-terms within an expression, any can be
reduced to form the reduction of that expression. A detailed account of reduction in the lambda
calculus is beyond the scope of this document, but information can be found in [10].

Definition 1.3. The set of types in the Curry system is defined to be:

τ ::= ϕ | τ→ σ

Where σ and τ range over types, and ϕ ranges over type variables. Note that an arbitrary type is
therefore a tree structure, the nodes being arrows and the leaves being variables. In extensions of
the system, the set of types is more complex, but for the simple lambda calculus, just variables
and arrows are used. Values (closed normalised terms with predefined meaning), for example
the church numerals, are represented as abstractions in the lambda calculus, and thus their types
are expressed as arrows.

Definition 1.4. Curry type assignment natural deduction rules:

(Ax) (x : σ ∈ B)
B `C x : σ

B, x : σ `C M : τ
(→I)

B `C λx.M : σ→ τ

B `C M1 : σ→ τ B `C M2 : σ
(→E)

B `C M1M2 : τ

In general, typing rules in the definition of a language’s type system are short implications that
define certain syntactic categories to agree with certain types as long as certain conditions, typ-
ically relating to the types of the sub-terms of those syntactic categories, are met. These im-
plications can be chained together to form a derivation for a complex term, by applying the
appropriate rule for the term’s top-level structure and systematically breaking the term down
into its sub-terms and typing those as well.

The judgement B `C M : σ is an infix notation that means “M can be typed with the typing
〈B, σ〉”, where B is a ‘basis’ - a set of predicates, one predicate for each unbound term vari-
able stating that it agrees with a type, and where σ is a type with which M agrees under these
conditions. The basis can be thought of as requirements on the types with which the free term
variables of a term must agree. Another way of looking at the basis, is as a set of preconditions
that the type system can use to prove a type σ for M.

Where a judgement appears above a line in a rule, that is one of the premises of the im-
plication, and where a judgement appears below a line, that is a conclusion that can be drawn.
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Conditions to the right hand side of the rule are additional conditions that must be true before
the rule can be applied.

It is possible to convert a valid typing for a given lambda term, to a new, different, but still
valid typing, by replacing a given type variable with a given type, consistently throughout the
types in the typing. This is called substitution. Substitution is called an operation on typings,
it can be thought of as making a consistent change to the derivation tree for the first typing, in
order to produce a different derivation that is also valid, and thus a new, valid, typing for the
original lambda term.

For every term, there exists a typing from which all other valid typings can be derived with
some substitution operations, this typing is called the principal typing. The typings that are the
result of operations on the principal typing are called instances of the principal typing.

In addition to this, it is possible to derive the principal typing itself with the rules of the Curry
Type System, therefore the system has the “principal typing property”. Some general remarks
on principal typings and this property can be found in [11].

Since we are concerned with the practical issues of type systems, it is interesting to note here
the practical benefits of this property. [2] describes how they are useful for efficient separate
compilation and recompilation of a module (if the principal typing is known, the type for a term
need never be re-inferred), and accurate error messages (since we can detect errors in the course
of unifying two principal typings rather than through attempting to type-check one sub-term
against another erroneous sub-term that has an erroneous type).

There exists a principal typing algorithm for the Curry Type System, which can generate the
principal typing for a given term. Its definition is not covered here but of interest is its auxiliary
algorithm unify. This algorithm takes two types and determines the sequence of operations
required to convert both of them into the same (new) type, an instance of both of the initial
types. This is essential for solving the constraints placed upon sub-typings on both sides of
an application, when building the principal typing for that application. Unification will be the
subject of much more detailed discussion in section 3.5. Some Curry types cannot be instantiated
into the same thing through substitution operations, and unification returns an exception in these
cases. When this happens, the principal typing algorithm declares that there is no typing for the
term.

1.3 Limitations of Curry Type System

A large class of lambda terms are not typeable. Consider self-application xx, here the type of x
has to be both a function, and also the argument of that function, which is not possible within
our inductively-defined type syntax. The principal typing algorithm will throw an exception with
this term as described above.

The fix combinator cannot, therefore, be typed, and this is a very useful term for program-
ming, since it allows us to write programs that do not have an upper bound on the time they
take to execute, e.g. the algorithm to calculate a factorial. Also, some strongly normalisable
terms, and even terms that are normal forms cannot be typed. The lack of fix would make the
system impractical for programming languages, but as it turns out it is quite easy to sidestep
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this issue, for the majority of practical requirements, by extending the syntax and semantics of
the language to include an operator that behaves as the fix combinator does, but has a special
typing rule, as is done with the language ML. Note that ML’s solution while being decidable,
cannot type all programs, specifically not those using polymorphic recursion. This technique is
sometimes desirable, as shown in [1]. There is a trade off in this area between decidability and
the scope of the type system.

A useful property that the Curry Type System does have, is the subject reduction property, as
discussed earlier, this can be seen by showing that B ` (λx.M)N : τ =⇒ B ` M[N/x] : τ, but the
converse (subject expansion) does not hold. This is because terms can ‘forget’ their sub-terms
as they reduce, e.g. M in the term (λx.y)M is forgotten, but these sub-terms are not forgotten
by the type inference algorithm. The beta-forgotten terms might force certain basis types to be
instances of what they really need to be, which will affect the resulting typing. Also the beta-
forgotten sub-terms might not be typeable at all in the system, so beta-expansions of typeable
terms may not be typeable.

A useful technique in software engineering is the use of modules to factor out duplicated
code, in a program, to ease the task of maintanance. To correctly type this circumstance, we
need to ensure that the typing required by the context of each reference to the factored-out code
is a valid typing for the factored-out code itself. This can be done by by successfully typing
these references with instances of the principal typing of the factored-out code. This, however
presents a problem with the Curry Type System in the lambda calculus. Factoring out code in
the lambda calculus can be represented by coding a redex into the program.

Example 1.5. A program in the lambda calculus, typed with the Curry Type System:

{} ` (λx.x)(λx.x) : ϕ→ ϕ

We can factor the (λx.x) out to produce a redex, this can be seen as referencing the definition of
the identity abstraction (λx.x) multiple times with the term variable I, but the resulting program
cannot be typed, we have self-application:

Example 1.6. The same program, defined in a modular way, untypeable with the Curry Type
System:

{} ` (λI. II) (λx.x) :?

The problem is that we need to express that each of the two “I” term variables has a different
type, according to its context, and that each I type is a valid type for the factored out code with
respect to the same basis. This cannot be expressed without extending the type system, since the
two “I” variables are forced to have the same type in the basis of II. There is no “subsumption”
when typing term variables that reference polymorphic code.

When factored-out code can be referenced in a variety of typing environments, it is called
polymorphic. Type polymorphism allows us to type such code in a manner that allows the typing
of references to the factored-out code despite them being in different type environments.

Subsumption is the act of typing a term with one type, on the premise that it already has the
type of another different type, this can be formalised with a rule like B ` M : τ =⇒ B ` M : σ.
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This means that even though we are given that M has type τ, we can use it in a context that
requires type σ, with the same basis. This act of subsumption is really the key to bridging the
typing “abstraction gap” that arises when code is factored out of a program. If we only need
polymorphism for our term variables, M can be x, in the above definition, and thus squashed
into the (Ax) rule.

Note how the basis remains the same during subsumption, this has to be true since the typing
of all the instances is bound by the basis of their contexts. Of course, the basis contains the link
to the more general type of the polymorphic code being referenced, and cannot be disturbed. If
the subsumption is to be the operation of substitution, as seems natural in the Curry System, i.e.
if σ = S (τ), then clearly the variable being substituted must not exist in the basis, i.e. B = S (B).
This will never be true with the Curry System since ultimately the type for the polymorphic term
variable must be extracted from this very same basis, so the type variable in the substitution will
always exist in there. Thus the Curry Type System does not admit a simple subsumption rule
that uses substitution.

In [10], a type system is presented for combinator systems where the principal typings for
each combinator are stored in an “environment”. When the combinators come to be used, the
equivalent (Ax) rule for the combinator terms allows the type in the environment to be instanti-
ated to whatever is required by the context of the combinator term. This is a form of polymor-
phism but does not extend to term variables in general, only combinator terms. It does, however,
avoid the problem of damaging the basis during instantiation by storing the principal typings
(whose type variables are disjoint to those present in the basis) for the combinators outside of
the basis.

In ML, there is a let syntax construct which is semantically equivalent to the redex mech-
anism of factoring out code that is discussed above. It is typed in a different manner to an
application of an abstraction however, since it first asserts a typing for the factored-out code, say
〈B, τ〉. It then “marks” each “unconstrained” type variable in τ with a quantified symbol before
embedding this as a type for the polymorphic term variable in the basis for the typing of the rest
of the code. (An unconstrained type variable in τ is one that does not occur anywhere in B).

When different term variables need to be typed with instantiations of this “marked” principal
typing, a special rule is used to convert the “marked” type variables into whatever is required,
using an extended notion of substitution designed to ignore the marked variables in the basis.
This prevents the operation affecting the basis so that it can used soundly for subsumption. The
ML type system is decidable, but does not type some terms, particularly uses of polymorphic
recursion, and of course using a new syntax to implement the factoring out of code does not
solve the problem that λx.xx is not typeable. Using generalisations of the ML type system that
type more terms has not lead to much success, since these type systems are often complex and
undecidable, or without principal typings.

The main limitations of the Curry Type System as it stands as a type system for practical
programming languages, can be summarised as:

• Some terms cannot be typed (e.g. self-application)

• Fix (an essential term in practical programming) cannot be typed
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• No support for polymorphism

These criticisms are linked. The second is due to the first, so by solving the first we also solve the
second. If we had some support for polymorphism for general term variables, we could actually
solve the first.

Both of the solutions to polymorphism referenced above, sidestep the issue of subsumption
by substitution in the Curry Type System, by first calculating the principal typing and storing
it separately from the other types in the basis. We shall now see how the Intersection Type
System employs a similar, but somewhat opposite approach to supporting polymorphism: It
collects together the requirements of the term variables in the basis, and then ensures that the
polymorphic code can be typed to each of the collected types.

1.4 Intersection Types

There are many intersection type systems in existence, they are each slightly different but they
share so much in common that it makes sense to discuss them in a general way in this introduc-
tion, before examining a few in detail later in this document.

Recall that we are motivated by the idea that two identical term variables in a term must both
agree with different, but non-unifiable types. However, we are constrained by the fact that in the
basis, the term variable can only be given a single type. A type system can overcome this by
having a type constructor that groups a set of types into a single type. Thus each term variable
can be typed with a different type, and the basis can presume both. The subsumption operation
is then simply to reduce this set of types to the subset that is required by each context in the
term. Another way of looking at this is that the basis contains a list of types, any of which can
be required of a term.

The type syntax for representing several types as a single type is usually a binary infix con-
junction, or intersection operator: &, ∧, or ∩. This is intuitive since we need the operator to
be commutative and associative, such that the order of types, or positioning of parentheses, in
τ1 ∩ τ2 ∩ τ3 is not important. Note that it is also usually possible for a term to be assigned the
empty set of types, this is sometimes denotedω, and called the “nullary intersection”. Previously
this was treated as a type constant, possibly because its appearance is removed from the usual
notation for intersections. Perhaps it is more intuitive to represent intersection types as a flat set,
e.g. Jτ1, τ2, τ3K thus the nullary intersection can be stated as JK, and ordinary curry types as JτK
(abbreviated to just τ), but in this document I will use the conventional binary notation and ω.

Assigning a term the nullary intersection is not particularly useful, since it allows no deduc-
tion about what types the term’s value or evaluation will definitely agree with, and thus the term
cannot be used in any context that requires a specific type. Intuitively, all the type ω provides us
with, is the information that the term could potentially evaluate to anything, which we already
knew. It is useful though, for typing terms that we do not care about, e.g. terms that are forgotten
during reduction. This is the key to the property of beta expansion, held by intersection type
systems.

The intuition behind the naming of intersection types is that if a value agrees with τ and σ,
then it agrees with τ, and it agrees withσ, so it agrees with a hypothetical type that is represented
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by an intersection of the sets of agreeing values for both types. Understanding the members of
such hypothetical agreement sets for data types is trivial, but trying to understand how the value
of a function might be represented is not. I find it best to think about intersection types directly in
terms of the rules that define them, without using any intuitive notion of sets and set intersection.

To formalise the claims about intersection types, here is stated the type rules used to intro-
duce and eliminate the intersection type constructor in the derivations of many intersection type
systems.

Definition 1.7. Typical rules involving intersections:

B ` M : τ B ` M : σ(∩I)
B ` M : τ ∩ σ

B ` M : τ ∩ σ(∩E)
B ` M : τ

These are intuitive from the English definition given above - a term can be typed to an intersection
of two types if it can be typed to both types, and subsumption is the removal of a type from the
intersection.

Example 1.8. To end this chapter, it is shown how the example in the previous section can be
typed with intersection types: (τ stands in place of “(ϕ→ ϕ) ∩ ((ϕ→ ϕ)→ (ϕ→ ϕ))′′.)

(Ax)
I : τ ` I : τ(∩E)

I : τ ` I : (ϕ→ ϕ)→ (ϕ→ ϕ)

(Ax)
I : τ ` I : τ(∩E)

I : τ ` I : ϕ→ ϕ
(→E)

I : τ ` II : ϕ→ ϕ
(→I)

` λI.II : τ→ (ϕ→ ϕ)

(Ax) x : ϕ ` x : ϕ
(→I)

` λx.x : ϕ→ ϕ

(Ax) x : ϕ→ ϕ ` x : ϕ→ ϕ
(→I)

` λx.x : (ϕ→ ϕ)→ (ϕ→ ϕ)
(∩I)

` λx.x : τ
(→E)

` (λI.II)(λx.x) : ϕ→ ϕ

Note how the deduction collects together both typings for I, and then deduces them both inde-
pendently for the typing of λx.x. This is in contrast to the ML system which would first type
λx.x and then generate a type that can subsume any valid typing for I. An interesting character of
intersection types, that complements universal types (from ML) is that we can type the use-cases
of the polymorphic code before the polymorphic code itself, which may prove useful in modular
programming languages.

Now we leave the lambda calculus for a while to study an Algol-like language that uses
intersection types extensively.



Chapter 2

Forsythe - A Case Study

Forsythe is described in detail in [4] and [5], we focus here upon its type system, but the referred
papers contain information about the language as a whole.

2.1 Introduction

The design goal of Forsythe is to be as “artistically” expressive as a practical programming
language, indeed more expressive than most programming languages to date, while retaining
a simple type system and well formed operational semantics (like the lambda calculus). By
“artistically” expressive, it is meant that Forsythe should allow typical programming code to be
elegantly expressed, in a concise, readable, and maintainable fashion.

The language’s design contains a few new and abstract concepts, that suffice to represent
many conventional ideas, thus these ideas need not be explicitly built in to the language as rules
in the type system and operational semantics. For instance; assignment, arrays and objects can
all be represented in terms of more primitive forms, as shall be seen.

Typically syntax sugaring is used to translate the conventional form of code into the new
representations, in order to keep the programs readable. Part of the fuel for the generalisation
is Forsythe’s type system, which makes creative use of intersection types to safely describe how
data can be constructed from many different things combined together.

The type system of Forsythe is not an extension of the Curry Type System, since although
it has →, it does not have type variables. Thus there are no principal typings in Forsythe,
and no notion of unification. Instead of type variables, there are 6 primitive type constants,
and a primitive subsumption relation defined over them. Note that without type variables and
substitution, we have no way of writing truly re-usable ‘template’ code, since the type of such
code would have to be the intersection of all possible types, including types yet to be defined by
the programmer.

In this document, τ, σ and ρ are metavariables that range over the various possible Forsythe
types.

10
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2.2 Primitive Data Types

The primitive data types (for terms that are, or evaluate to, a value) are real, int, bool and
char. Note that the type for variables, in the sense of objects that can store data, is not any of
these types, and will be defined later. These types are simply the types of variable evaluations,
arithmetic expressions, and literals. In short, these are the objects that represent data itself,
rather than data storage. Forsythe defines the reflexive, transitive subsumption relation (≤) which
relates two types if agreement with the type of the left-hand-side implies agreement with the type
on the right-hand-side. Initially the subsumption relation is specified here over the data types,
but as more features of the Forsythe type system are discussed, its definition will be extended.

Definition 2.1. Subsumption for primitive data types:

int ≤ real
real ≤ value
bool ≤ value
char ≤ value

There is a subsumption rule that allows types to be relaxed in a derivation, according to the
subsumption relation.

Definition 2.2. Subsumption derivation rule:

B ` M : τ(≤) (τ ≤ σ)
B ` M : σ

2.3 Intersections

Since the type system of Forsythe is an intersection type system, there is an introduction and
elimination rule in the usual way:

Definition 2.3. Rules for (∩):

B ` M : τ B ` M : σ(∩I)
B ` M : τ ∩ σ

B ` M : τ ∩ σ(∩E)
B ` M : τ

(ns)
B ` M : ns

Note that ns denotes the nullary intersection, or “nonsense”. The subsumption relation is ex-
tended over types involving the (∩) type constructor.

Definition 2.4. Subsumption for intersections, ∀σ,σ′, τ, τ′ ∈ Types:
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σ ≤ ns
σ ≤ σ ∩ σ

σ ∩ σ′ ≤ σ′

σ ∩ σ′ ≤ σ

(σ′ ≤ σ) ∧ (τ′ ≤ τ) =⇒ (σ′ ∩ τ′) ≤ (σ ∩ τ)

Note that now the subsumption relation has lost its property of antisymmetry since, for example
int ≤ (int ∩ int) ≤ int, so the relation is now just a pre-order. If, however we consider types
modulo equivalence, where types are equivalent if they subsume each other, we squash the cycles
of the relation into single nodes, and we get a partial order again. Type equivalence, as defined
here, is given the operator (∼). This is a byproduct of redundancy in the syntax used to express
intersection types, rather than a property of the ideas the type system represents.

2.4 Arithmetic

Forsythe has syntax, semantics, and type rules for the usual binary integer / real arithmetic and
for boolean logic. Overloaded syntax (such as (+) for int and real) is given a type rule for each
of its meanings, thus it can be typed to the intersection of all its typings using (∩I). There is
also syntax and typing rules for literals such as true, false, 3, ’a’, etc. The precise rules are
omitted here since they are not very interesting.

2.5 Imperative Commands

In Forsythe, the type comm is a type for syntax that is, or evaluates to a command. A command is
something which causes the state to change. comm is therefore not a data type like int, because
it expresses the character of code that changes state, rather than code that returns a value. Despite
looking a lot like the lambda calculus at first glance, Forsythe is an imperative language with a
program state that can be altered by commands. Variables can be written to, and then later on
can be read to determine what was last written to them. compl is a special subset of commands
that never return control, this could be used for exceptions, early returns, and exiting a program.

Commands can be sequentially composed with the “;” syntax, and looped with a while con-
struct, as in conventional imperative languages. Both of these control flow constructs are typed
with comm or compl as appropriate to their sub-terms. As will be shown, it is the prerogative of
abstraction to define new variables on the implicit stack, and the operation of assignment is actu-
ally represented in terms of an application, so there is no need to type either of these imperative
features to comm.

Definition 2.5. Subsumption for commands and completions:

compl ≤ comm



CHAPTER 2. FORSYTHE - A CASE STUDY 13

2.6 Arrows

Forsythe type syntax has arrows, as mentioned earlier. There are syntax, semantics, and type
rules for abstraction and application, and they are essentially the same as those in the lambda
calculus. Abstraction is, in fact, the only way of introducing new (bound) term variables into
the program code. The subsumption relation is inductively extended to cater for arrows in the
following way.

This inductive definition is not present in the Curry Type System, since we have no base case
for the first definition, and no intersection for the second.

Definition 2.6. Subsumption for arrows, ∀σ,σ′, τ, τ′ ∈ Types :

(σ′ ≤ σ) ∧ (τ′ ≤ τ) =⇒ (σ→ τ′) ≤ (σ′ → τ)
(σ→ τ) ∩ (σ→ τ′) ∼ σ→ (τ ∩ τ′)

2.7 Examples of Variables and Assignment

A program in Forsythe is a block of syntax, which is typed to comm. Below is an example,
which writes the exclamation mark to standard out, but notice that it is an application, and that
the predefined constant term std out is actually of type char→ comm.

Example 2.7. Forsythe “hello world” program:

std_out ’!’

This is the first example of how a conventional language construct has been represented in terms
of a simpler, more abstract one. This code could in fact have been written using some syntax
sugar:

Example 2.8. The same program using assignment:

std_out := ’!’

That is, the assignment of the character value to the term variable std out is in fact the application
of the term variable and the value. Terms that can have characters assigned to them, are actually
functions from char to comm, and one applies them to a value when one wants to assign that
value to the variable. The use of the word “variable” here is slightly imprecise, since we are only
interested in terms that can be assigned to, whereas variables can be evaluated as well. Variables
in fact have types like (char → comm) ∩ char, i.e. they can be used in contexts requiring either
assignment or evaluation.

This is the second example of how a conventional idea has been represented in terms of more
abstract ideas, and also an example of how intersection types have been used to join the abstract
ideas together. To make the notation more symmetric and concise, the abbreviation characc is
used instead of char → comm, and the same for the other primitive data types. Also, the type
of a variable is abbreviated to charvar, rather than characc ∩ char.
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Here is another Forsythe example to reinforce the above information, and also introduce
some new features. For reference, the conventional imperative code listed below it has the same
behaviour, but we are not interested in the way Forsythe expresses this behaviour, rather the
manner in which this is typed.

Example 2.9. Variable and procedure definition. Recall that intvar → comm means the same
thing as int ∩ (int→ comm)→ comm:

let f:intvar->comm = \x.xx in

newintvar 0 \i.

(

f i

)

Example 2.10. The same program in an imperative pseudo code:

declare proc f (byref int i) {

i := i;

}

declare int i := 0;

f(i);

Firstly, the let syntax is, as in ML, to factor some code out from the rest of the program, so f
is defined to be an abstraction that self-applies (self-assigns) its argument. The let is actually
just syntax sugar that maps to an abstraction/application pair as used in Chapter 1, however the
syntax of let allows multiple definitions to be made at the same time, which will make for a
more concise and readable definition than abstraction / application would.

Since the type of f is specified in the syntax, we know that the argument of the abstraction
is an integer variable, and we know that the body is supposed to be of type comm with basis
{x : intvar}. The subsumption due to intersection elimination allows us to type-check the self
application in the body accordingly, since intvar is in fact (int → comm) ∩ int, and thus the
first x takes (int→ comm) type, and the second x takes int. Intuitively, we know that x must be
read from and written to, so it makes sense that it must be a variable. Clearly since f self-applies
its variable argument, its behaviour is to assign the variable passed to it, to itself, which results
in no change to the state.

Moving now to the code that uses f , the predefined constant term newintvar has type int→
(intvar → comm) → comm, it is the method of allocating storage for new variables (on the
implicit stack). Note that the body of the abstraction required in the second argument is the code
which uses the new variable. When applied to its 2 arguments, newintvar can be thought of as
applying its second argument to a hypothetical new variable, the value of which it initialises to
the value gained by evaluating its first argument.

Thus the body of the second argument has access to the new variable in the sense that it
just uses the abstraction’s bound term variable to reference the new variable. When control
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returns from the second argument, the application of newintvar returns control. Note how since
the body of the abstraction must be of type comm, there is no way it can ‘return’ the newly
allocated variable, so it cannot be accessed out of scope.

The code therefore creates a new integer with a default value of 0, and then sets this value to
itself, so no change occurs. We have demonstrated how new variables are created, and how self-
application makes an appearance as self-assignment in Forsythe, and can be typed accordingly.

2.8 Decidable Type Inference Algorithm

The choice of type checking versus type inference in Forsythe deserves some comment: It
is known that the process of complete type inference is impractical due to undecidability, so
Forsythe requires some type annotations, but in the interests of not insisting upon a type anno-
tation unless it is absolutely necessary, the rules that define where type annotations are required
are quite complex. Vaguely; certain phrases, especially abstractions, are not allowed in certain
contexts unless they have explicit type information, see [5] for more details. Also, recursive
definitions, either specified using the fixed point syntax, or with a recursive let definition, must
be explicitly typed.

The programmer may wish to annotate types unnecessarily, to limit the code to an instance
of its principal typing, or perhaps so that erroneous code can be quickly spotted. But it must
be up to the programmer to decide whether annotations are appropriate. It is not clear how to
balance the clutter inherent to type annotations against the benefits in the general case.

There is an interesting issue regarding type annotations of abstractions: How do we annotate
x in λ(x :???).(x+ x) if we want the abstraction itself to be (int→ int)∩ (real → real)? Forsythe
has a special notation which will provide this functionality in a limited set of cases, the syntax
appears as follows.

Example 2.11. Interesting type annotation:

\x:int|real . (x + x)

The abstraction above can be typed to be either int → int or real → real. This is not sufficient
for all cases however, as is noted in [12]. That paper presents a type system in which type
annotations can be made on all terms.

2.9 Objects

Now we focus on another conventional programming language feature, the struct, tuple, or ob-
ject. Normally a language has a set of special syntax and type rules for composing and decom-
posing objects in terms of their constituents, and the types of their constituents. Forsythe on the
other hand makes creative use of intersection types so that the extension to the language required
to handle objects is in fact very tiny.

Forsythe has a syntax that allows sub-syntax to be given a field name. Where we would
normally have an expression, e.g. 3, we can give it a name.
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Example 2.12. Syntax for naming expressions, or “object construction”

name == 3

Note this double equality symbol is different to the single symbol used for boolean equality. This
syntactic construct is to be viewed as a primitive for object construction, although it can only
construct objects containing a single field. Note that since the field can be an abstraction or a
variable, we can represent the conventional notion of objects with both methods and fields with
this single operation. If the type of the original expression was σ, the type of the new expression
will be name :: σ. Thus we are introducing a new type constructor, which can assign names to
existing types.

On the other hand, if we have a named expression, we can use the “field selection” syntax
to extract the data from that expression that has the correct name, for example the following
expression reduces to 3:

Example 2.13. Syntax for “field selection”

(name==3).name

The type rule for that syntax ensures that the names used for the two expressions are consistent.
This by itself does not allow us to do much, but combined with another operation it is very

powerful. Here are the formal type definitions for the naming operations.

Definition 2.14. Rules for object construction and field selection, ι ranges over valid names:

B ` M : τ
B ` ι==M : ι :: τ

B ` M : ι :: τ
B ` M.ι : τ

Definition 2.15. Intuitive extension of subsumption for objects: ∀σ,σ′ ∈ Types, ι ∈ Labels:

(ι :: σ) ∩ (ι :: σ′) ∼ ι :: (σ ∩ σ′)
(σ′ ≤ σ) =⇒ ι :: σ′ ≤ ι :: σ

Now we can construct singleton objects, it is possible to construct larger objects with an opera-
tion called “merge”. Its syntax is just a binary operator (,). One can merge together any number
of abstractions or named terms. The result of merging two expressions is a value representing
both of them simultaneously. Operations on the merged data must therefore unambiguously and
implicitly select a valid value from those inside. To prevent ambiguity, reduction of the merge
operation is currently only defined when it occurs on the left of an application, or within a field
selection operation as just discussed above.

If a merge has two identically named fields, or two abstractions, the right-most is what
emerges during a field selection or application respectively. Also, if merge is applied to pro-
gram fragments (p1, p2), p2 must be an abstraction or a field type. Thus you can merge anything
with a named expression or with an abstraction. The “anything” can be another merge of course,
so this operation can be thought of as appending a field or an abstraction to the end of an object,
to specify a larger object. Here are the formal reduction and type inference rules to make things
more clear. Note that “if all fails”, p1 is selected regardless of what it is:
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Definition 2.16. Reduction rules for merging:

(p1, p2)p3 { p2 p3 (if p2 is an abstraction)
(p1, p2).ι { p1.ι (if p2 is an abstraction)

(p1, p2)p3 { p1 p3 (if p2 is a field)
(p1, p2).ι { p1.ι (if p2 is a non-ι field)
(p1, p2).ι { p2.ι (if p2 is an ι field)

Definition 2.17. Type inference rules for merging:

B ` p2 : τ
(if τ is an arrow or a field type)

B ` (p1, p2) : τ

B ` p1 : ρ
(if ρ is not an arrow nor a field type)

B ` (p1, p2) : ρ

B ` p1 : τ→ σ
B ` (p1, ι==p2) : τ→ σ

B ` p1 : ι :: τ
B ` (p1, ι

′==p2) : ι :: τ

These are powerful and abstract constructs, so it helps to demonstrate how they can be used to
create object-like data abstractions in a program. The following program defines and uses a co-
ordinate data-type containing an x and y integer component (generally there is no need for these
to be the same type). First a type is defined to represent the co-ordinate, then a function that can
be used to create new coordinates, and finally code that creates a coordinate and prints out both
components.

Printing an integer in decimal representation is achieved by first converting the integer to an
array of characters, and then applying std out to that array. I assume that std out is capable of
printing an array of characters in the same way that it can print a single character. Converting an
int to an array of characters is done by applying the predefined constant int to charseq to the
integer, and to an abstraction that will be applied to the new character array to yield a command.
In this case std out suffices in this role.

Example 2.18. Using a “co-ordinate” object:

%define a new type

lettype coordvar == (x::intvar & y::intvar)

%define a "constructor" function

let newcoordvar : int -> int -> (coordvar -> comm) -> comm ==

\x_init \y_init \using_code .

newintvar x_init (\xcomp.

newintvar y_init (\ycomp.

using_code (x==xcomp,y==ycomp)
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)

)

in

%instantiate a coordinate with default values, and then print

newcoordvar 10 20 (\c.

int_to_charseq c.x std_out;

int_to_charseq c.y std_out

)

It is of particular interest how the Object Oriented Programming notion of type polymorphism
and the subsumption of parent object types by their child types due to object inheritance man-
ifests itself in Forsythe. Since an object is a collection of fields, and it can be thought of as
inheriting from a parent object with a subset of those fields (extending the parent with the ad-
ditional fields), it can be shown that τchild ≤ τparent with the existing definitions of ≤ and object
type.

For instance, consider the object above, τparent = (x :: intvar ∩ y :: intvar), as the parent of
object τchild = (x :: intvar ∩ y :: intvar ∩ z :: intvar). It can be shown that τchild ≤ τparent since:

• σ ∩ σ′ ≤ σ where σ = y :: intvar and σ′ = z :: intvar.

• (τ′ ≤ τ) =⇒ (ρ ∩ τ′) ≤ (ρ ∩ τ) where τ′ and τ are the types related above, and ρ is
x :: intvar.

Thus the traditional subtype relation from Object Oriented languages such as Java manifests
itself in Forsythe due to the natural properties of the subsumption relation relating to intersections
of field types.

2.10 Arrays

Arrays are a data type that represents an arbitrary-length sequence of identically typed data. They
are often used to represent strings of text as arrays of characters. Most programming languages
have features for creating arrays, and allow accessing of the elements through the use of an
integer expression as an index.

Forsythe takes the simpler approach of representing arrays in terms of a merge of the function
that represents the contents of the array, and a field that holds the length. The function is actually
a “lookup” function of type int → ϕ where ϕ represents the type of the array elements. If this
function is called with an index that is “out of bounds”, an error completion is called, so array
bounds checking is done at run-time.

Clearly, arrays are therefore implemented with the same abstract mechanism that implements
objects, and have type (length :: int) ∩ (int→ ϕ). To make this representation more manageable,
there is a syntax sugaring for creating a new array with a sequence of values:

Example 2.19. Example of array construction syntax:

int_to_charseq seq(0,1,4,9,16,25,36).length std_out
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Such a seq expression has array type (length :: int) ∩ (int → intvar), and can be applied to an
integer between 0 and 6 to obtain the variable at that index of the array, which you could then
modify, since it is a variable. Also you can extract the length of the array for whatever purposes
(printing, in this example) through use of the field selection operation. Of course, such notation
is designed for arrays with no regular pattern to their contents. If on the other hand such a regular
pattern exists, it is best to define the array with the alternative notation:

Example 2.20. Example of explicit array function:

newintvarseq 7 (\x.x*x) \arr.

( int_to_charseq arr.length std_out )

This code behaves the same way as above, but uses the predefined constant function newint-
varseq, which has type int → (int → int) → ((intvarseq → comm) → comm). This operates
in much the same spirit as other “newvar” functions in previous sections. The first argument
is the length of the array, the second is an abstraction for generating the initial values for the
variables in the array, and the last is an abstraction which receives the new array. Once bound to
arr, the array then has its length converted to a string and printed, as before.

Similar predefined functions exist for generating arrays in all the primitive types, and also to
allow the use of the array in abstractions that return something other than comm. This makes for
a lengthy definition of the type of each of these identifiers.

2.11 Conclusion

This case study shows that intersection types are capable of typing powerful features that have
not been used before in programming languages. Since it is not clear how to type these features
without intersection types, we can believe that intersection types are crucial for the inclusion of
these features.

We have seen how the use of intersection types is involved in the simpler and more flexible
definition of variables (acceptors ∩ expressions), objects (intersection of fields), arrays (inter-
section of function and field), in terms of these powerful features. The overriding concept used
here, is that a conventional language feature is represented with lots of other, smaller, language
features all combined into the same identifier, or expression. Intersection types allow the types
of these components to be “combined”.

Intersection types have also been used to effect finitary type polymorphism when typing
terms such as λx.x + x, which previously could only (inflexibly) be typed with int → int or
real → real. Although this code does define an ad-hoc polymorphic function, it does not define
an overloaded function as used in C++ and Java, since the body of the function is the same for
both cases of the type of the input variable. There seems to be no support for overloading of the
user’s abstractions in Forsythe in this sense. However, intersection types allow the overloading of
the predefined operators to be carried through the typing of the programmer’s own abstractions.

Polymorphism is also present in the definition of the subsumption relation over the primitive
data-types, such as between int and real. Such polymorphism is present in many languages such
as C, Haskell and Java.
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Finitary polymorphism is not ideal for writing truly re-useable code, such as a linked list
abstract data type, since the type assigned to such code will be a finite intersection of types, and
thus never encompass all its potential uses (in this case will never represent all possible lists of
various things). This is because the programmer can define their own types that are not in the
intersection. What would be ideal for this is a kind of parametric polymorphism based around
type variables such as used in ML. Thus a type can represent an infinity of potential uses.

One gets the impression that quantified and intersection types will complement each other
quite well: Quantified types are ideal for typing re-usable factored-out code, but cannot be used
to type the applications of this code until after that point. Intersection types, on the other hand,
are excellent at typing the application of polymorphic code without any knowledge of what the
factored-out code actually is, and the derivation for the factored-out code tends to be tailored for
the set of its deployments. In other words quantified types collect together what type a re-usable
subprogram will provide, but intersection types collect together what behaviour is expected from
a re-usable subprogram. The next chapter therefore concerns intersection type systems with type
variables, since it seems they will be useful in practice for this resason.



Chapter 3

Intersection Type Systems with Type
Variables

Type variables allow the typing of truly polymoprhic code. Previously, code has been typed
using finitary polymorphism, but this will not suffice for the demands of modular programming
in modern software engineering. We need a method whereby code can be typed once, and
instances of this type will always suffice for typing the uses of such code. The use of type
variables allows for principal typings of modular code, and operations that can bridge the gap
between the most abstract “principal” typing, and the concrete requirements of the context where
such code is used. Thus this chapter is an account of developments in the area of intersection
types with type variables, and the scope of their potential practical application.

Since we simply wish to study an intersection type system with type variables, there is no
need to add support for data types, commands, and other constants like was done for the lan-
guage Forsythe. Instead we can study the type system in the context of the elegant lambda
calculus, since most of the properties we are interested in manifest themselves elegantly in such
a language. Thus it is for the lambda calculus where most work has been done in this area.

An intersection type system for the lambda calculus with type variables and arrows, is simply
an extension of the Curry Type System with the intersection type constructor, (∩I), and (∩E),
as seen in previous chapters. There are many different systems like this. As the theory has
evolved since its original conception, systems have been devised with novel properties, and it has
become better understood what the essence of intersection types are, resulting in a more elegant
definition. Each different system has rules with subtle differences that affect its properties. It
is of interest to briefly review some of these systems, since it gives insight into the character
of intersection type systems. The information about these systems is derived from [9], which
speaks of each them in much more detail.

Firstly a type system was invented with the constructor σ ∩ τ and appropriate introduction
/ elimination rules. Initially, intersection was not allowed to the right hand side of arrow types.
This system allowed the typing of all normalised terms, since previously untypeable expressions
that forced unsolvable constraints on the typings of term variables could now be typed by inter-
secting the types of the term variables. Terms that were not strongly normalisable could not be
typed however, for example if terms contained the fix combinator λ f .(λx. f (xx))(λx. f (xx)), as a

21



CHAPTER 3. INTERSECTION TYPE SYSTEMS WITH TYPE VARIABLES 22

sub-term, there would be no derivable type for the term.
This led to the introduction of the type constant ω which could be assigned to any sub-

term, particularly those that could not be typed before. This gave the type system the beta
expansion property, since sub-terms known to be “forgotten” during reduction could also be
“forgotten” during the type assignment without affecting the derived type of the term. Now, all
normalisable terms could be typed with typings that did not mention ω (although the derivations
may have containedω). This is because normalisable terms terminate through a particular choice
of reductions, i.e. eventually the infinitely-reducing sub-terms are forgotten in expressions like
(λy.M)((λx.xx)(λx.xx)) where M does not contain y to produce a fixed point. Such forgotten
terms, and y in the basis of the typing of M would be typed with ω, but the typing of the redex
would be the same as the typing of M, which would not contain ω, since M would not use y.

A proof of completeness of type assignment in the intersection type system was made pos-
sible by the introduction of a complex subsumption relation and a rule that allowed types to be
subsumed according to this subsumption at any place in the derivation tree. Also the type syntax
was relaxed to allow intersections to the right of arrow types. Note that this system is the one that
most resembles the Forsythe type system, in its use of type syntax and subsumption. This system
is known as the BCD system, after its authors, and is significant in the evolution of intersection
types, because it allowed the proof of these properties.

It was later shown that this system was too general. The “looseness” of the rules mean
there are multiple distinct derivations of the same typing for the same term, and many types
are equivalent descriptions, in the sense that they both subsume each other. This simplifies
the definition of the type system, but causes a problem when trying to understand and prove
properties of the type system. It is not clear which rules to choose when building a derivation, and
proofs become very complex and hard to follow, since they have to account for all possibilities.

Restricting the type syntax to the original form - no intersection on the right hand side of ar-
rows, and removing the subsumption relation from general derivations results in a much simpler
system with much the same properties, but no type equivalence during η reduction / expansion.
By allowing subsumption just for term variables (originally just a subset of this relation - (∩E)
was allowed for term variables), the system has this property as well, but is still free from distinct
derivations for the same typing. In this system, the implication B ` M : τ =⇒ B ` M : σ (τ ≤ σ)
holds, which is consistent with our intuition of subsumption. With just (∩E) in the (Ax) rule, it
was impossible to derive the typing {x : τ→ σ} ` x : (τ ∩ ρ)→ σ.

In this system, since there are restrictions on the right hand side of arrows, there are restric-
tions on the typing of the bodies of abstractions, and the result of applications. In fact the only
place (∩I) is allowed is on the right hand side of an application, which is consistent with our
requirement of allowing multiple types for term variables, and hence function arguments. It was
also noticed that the type constant ω in the BCD and earlier systems, can be represented by the
nullary intersection, and its rule can be squashed into (∩I). Since intersection is only allowed to
the left of an arrow, and at the root of a typing, the logic of (∩I) was squashed into the (→ E)
rule, and also allowed as a special case, at the root of derivations.

The new representation of ω simplified the definition of the subsumption relation used in the
(Ax) rule for term variables, but this relation is otherwise unaltered from the BCD description,
except for the removal of definitions pertaining to arrow types with intersections on the right
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hand side. That intersection type system is what is given here, and can be thought of as the result
of this process of development. It is probably the best system to present here, because it has a
useful properties, and an elegant definition that compares well with the Curry Type System.

3.1 Essential Intersection Type System

Although there is no explicit (∩I) and (∩E) in this system, it is possible to construct derivations
with intersections because the “functionality” required to do this is embedded into (Ax) and
(→ E).

Definition 3.1. The set of types. Here there are two levels in the definition, τ, σ, etc are called
“strict types”, and range over the types that are not intersections, whereas the usual metavari-
ables range over all types, including intersections. Note that the nullary intersection ω is repre-
sented here as τ1 ∩ . . . ∩ τn (n = 0).

τ ::= ϕ | τ→ σ

τ ::= τ1 ∩ . . . ∩ τn (n ≥ 0)

Definition 3.2. Subsumption: (n ≥ 0), (m ≥ 1)

∀ τ ∈ {τ1 . . . τm} . (τ1 ∩ . . . ∩ τm ≤ τ)
(∀ τ ∈ {τ1 . . . τn} . σ ≤ τ) =⇒ σ ≤ (τ1 ∩ . . . ∩ τn)

σ ≤ τ ≤ ρ =⇒ σ ≤ ρ

(σ′ ≤ σ) ∧ (τ′ ≤ τ) =⇒ (σ→ τ′) ≤ (σ′ → τ)

Definition 3.3. Natural deduction rules for strict typings. Strict typings are not the only avail-
able typings, but they form the core of all derivations.

(Ax) (x : σ ∈ B, σ ≤ τ)
B `s x : τ

B, x : σ `s M : τ
(→I)

B `s λx.M : σ→ τ

B `s M1 : σ1 ∩ . . . ∩ σn → τ B `s M2 : σ1 . . . B `s M2 : σn(→E) (n ≥ 0)
B `s M1M2 : τ

Note that the result of each of these rules is a typing with a non-intersection type. This means
that a typing derived for an arbitrary term with the strict rules cannot be an intersection. This is
not the case in other systems, because here, intersection has been squashed into the (→ E) rule,
and is therefore not permitted at the root of the tree. To remedy this, there is one more rule that
can be appended to the root of a strict derivation to produce an “essential” derivation that allows
the intersection of any number of strict typings to be a typing for a term.

Definition 3.4. Natural deduction rule for essential typings:
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B `s M : τ1 . . . B `s M : τn(Ess) (n ≥ 0)
B `E M : τ1 ∩ . . . ∩ τn

Thus from now on we formally consider a typing 〈B, τ〉 to be a valid typing in the intersection
type system, for a lambda term M if B `E M : τ.

Note that taking n = m = 1 in all the above definitions produces the original Curry Type
System, with the subsumption relation reduced to merely the identity relation. The presence of
the nullary intersection ω is allowed through n = 0 in (→ E), (Ess), and in the second line of
the subsumption relation.

3.2 Terms Typable With This System

This, like the BCD system, can type all lambda terms in normal form without use of the nullary
intersection. This can be proved by induction on terms - the interesting part is when typing an
application term of the form xM1M2...Mn, the first subterm is a term variable and thus it is easy
to type it as a function over the others. If the term variable is used elsewhere, we can just form
the intersection in the basis. We also know that types are preserved during beta expansion, thus
all normalisable terms can be typed.

Terms that do not normalise (infinitely reduce) cannot be typed except with the nullary inter-
section. The canonical example of an infinitely reducing term is (λx.xx)(λx.xx). Attempting to
type this without using (Ess)(n = 0) requires use of (→ E), and an agreement between the two
(λx.xx). It is impossible to solve this agreement because making an appropriate change to the
sub-derivation of one produces a reaction in the other, and the system never stabilises. Because
there are restrictions on where intersection types may be used in a derivation, when typing such
terms with ω, sometimes it is necessary to type a larger context of the term with ω, up to a (→ E)
rule, or maybe up to the root of the derivation.

Weakly normalisable terms such as (λx.z)((λx.xx)(λx.xx)) can be typed because the non-
normaliseable part is an argument that is (eventually) forgotten in the course of reduction, and
thus can be typed with the nullary intersection without affecting the derivation for the body of
the abstraction λx.z. The nullary intersection is in fact not present in the eventual typing, since
this typing is equivelent to the typing of the normal form of the term, and as mentioned earlier,
the derivation of the normal form need not contain the nullary intersection.

3.3 Principal Typings

The principal typing property is useful for separate compilation, recompilation, and accurate
error messages [2]. It is therefore of great interest to see how the principal typing property
manifests itself in an intersection type system of this nature.

The definition of a principal typing algorithm as a depth-first parse of the abstract syntax
of the term is plagued by the problem of knowing which sub-terms to type with the nullary
intersection (because they cannot be typed otherwise). We therefore want to nullify all un-
normalisable subterms, but detecting which ones they are is an instance of the halting problem,
and thus undecidable.
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However it is possible to define the principal typing for a term using the β= property, and
the fact that it is possible to type normal forms with an algorithm. The way this is formalised is
showing how the set of typings of “approximate normal forms” has a maximum element, or is in
fact infinite. An approximate normal form of a term is a term after a certain number of reduction
steps, that has had certain subterms replaced with a special symbol (⊥) so that it contains no
redexes (hence normal form). ⊥ is typed with the nullary intersection. In effect, the set of
typings of approximate normal forms is the set of possible typings of partial reductions with
various parts typed with the nullary intersection. This allows “partial” reductions to be typed in
the same way that normal forms can be typed, which otherwise wouldnt be possible.

There is more complexity however, since only the right hand premise of a (→ E) rule, or the
root of a derivation can be used to type a subterm with a nullary intersection. Therefore the terms
we can replace with ⊥ are limited to subterms on the right of applications and the root itself.

Recall that the principal typing property is present if there is a typing for each typable term,
which can be converted to any other typing for the term with an operation on the typing itself. It
can be proved that an arbitrary term, when typed by the above method, can be instantiated into
all other terms. For the Curry Type System, this instantiation operation was substitution, and
for the same reason it is clear that this concept will play a role here. There are some typings
which cannot be instantiated from the principal typing with just substitution however. To prove
the principal typing property requires the introduction of other methods of instantiation as will
be discussed in the next section.

Although other type systems in common use do not have principal typings, it is most desir-
able that they do, since it brings immediate benefits to programming. Since intersection type
systems have this property, this is evidence that they will be useful in practice.

3.4 Operations On Typings

Originally principality was proved for the earlier systems, such as in [7]. The required operations
and the definition of the principal types are slightly different for each system, since the rules, type
syntax, and hence the derivations, are different, and operations on typings work by mutating the
derivation in a consistent way.

Here is given a summary of operations that apply to the essential system. It is described how
the derivation is mutated, and how this modification manifests itself in the derived typing. This
information is derived from [8] and [7] (the former applies better to the essential system) where
formal descriptions are given. This set of operations is not the only set which is sufficient for
this type system, but it is sound, so no operation can produce an invalid typing.

3.4.1 Substitution

Firstly substitution is defined differently to the Curry Type System. Although it works in the
same way - by exploiting the way that the derivation rules do not tie down the typing completely.
If a derivation involves a type variable, that variable can be replaced with either another type
variable, or an arrow, as long as this change is repeated throughout the derivation.
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There are no rules in the derivation that require a type to be a type variable, and there are no
rules that forbid an arrow type, but intersection types are only allowed in very specific places.
Substitution is thus only allowed to replace type variables with strict types. This requirement is
also present in the type syntax, since intersections are not allowed on the right of arrows.

As a special case, it is also possible to replace a type variable with the nullary intersection.
This causes more complexity since if a type variable is to the right of an arrow, and this is done,
then the whole arrow is reduced to the nullary intersection. In [9] this capability is removed from
substitution, in favour of a 4th operation called covering, but covering is not sound on essential
typings.

3.4.2 Lifting

Liftings work by changing the amount of removal between σ and τ in an instance of the rule
(Ax) where σ ≤ τ. The effect on the derived typing is that the basis can be made smaller, or the
type can be made larger, in terms of (≤).

Example 3.5. Example of lifting in the typing of a term variable x, verify with the definition of
(≤):

• 〈{x : σ ∩ τ}, σ ∩ τ〉 will lift to

• 〈{x : ρ ∩ σ ∩ τ}, σ ∩ τ〉 will lift to

• 〈{x : ρ ∩ σ ∩ τ}, τ〉 will lift to

• . . .

Operations are expressed as functions from types to types, so lifting is denoted with a pair of
typings, e.g. L〈B1,τ1〉〈B2,τ2〉 where B1 ≥ B2 and τ1 ≤ τ2. When applied to a typing, if the typing is
equal to the first, then it returns the second, otherwise it simply returns the typing it was given.
It will never return 〈B1, τ1〉.

3.4.3 Expansion

Consider a principal derivation with an instance of the (→ E) rule. It is clearly possible to
duplicate one of the sub derivations that forms the intersection type on the right-hand premise,
renaming all the type variables to make it distinct. In the algorithms used, it is easier to rename
the original subtree as well, the type variables in this original tree will not be present in any part
of the resulting typing. This change to the derivation will clearly affect the argument of the arrow
on the left hand side of the rule, and thus the sub-derivation rooted there, and thus perhaps the
derived basis or type below the (→ E) rule. Also since the duplicated sub-derivation will need
to derive new types from the basis, the basis will have to be altered to contain intersections of
new and old types for all the term variables concerned.

It is also possible to expand at the level of the (Ess) rule, which will produce a very symetrical-
looking typing. Here is an example of expansion. First is presented a derivation for x(yz), this
example is used in [9].
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Example 3.6. Proof tree that demonstrates potential for expansion. B = {x : ϕ1 → ϕ2, y : ϕ3 →

ϕ1, z : ϕ3}.

(Ax)
B `s x : ϕ1 → ϕ2

(Ax)
B `s y : ϕ3 → ϕ1

(Ax)
B `s z : ϕ3(→ E)

B `s yz : ϕ1(→ E)
B `s x(yz) : ϕ2(Ess)
B `E x(yz) : ϕ2

There are 3 places in this derivation where an expansion can occur: the two (→ E) rules, and
the (Ess) rule. The simplest example of the effect of expansion is the topmost (→ E) rule. Here
we see the sub-tree for z is duplicated, and the effect propogates to the definition of the basis
because it affects the left hand sub-tree of said (→ E) rule.

Example 3.7. Expansion of topmost (→ E) rule. B = {x : ϕ1 → ϕ2, y : (ϕ3 ∩ ϕ4) → ϕ1, z :
ϕ3 ∩ ϕ4}.

(Ax)
B `s x : (ϕ1 ∩ ϕ5)→ ϕ2

(Ax)
B `s y : (ϕ3 ∩ ϕ4)→ ϕ1

(Ax)
B `s z : ϕ3

(Ax)
B `s z : ϕ4(→ E)

B `s yz : ϕ1(→ E)
B `s x(yz) : ϕ2(Ess)
B `E x(yz) : ϕ2

Note how the basis was affected by the expansion. If the second (→ E) rule is expanded, the
result is very similar.

Example 3.8. Expansion of lower (→ E) rule. B = {x : (ϕ1 ∩ ϕ5) → ϕ2, y : (ϕ3 → ϕ1) ∩ (ϕ4 →

ϕ5), z : ϕ3 ∩ ϕ4}.

(Ax)
B `s x : ϕ1 → ϕ2

(Ax)
B `s y : ϕ3 → ϕ1

(Ax)
B `s z : ϕ3

(→ E)
B `s yz : ϕ1

(Ax)
B `s y : ϕ4 → ϕ5

(Ax)
B `s z : ϕ4

(→ E)
B `s yz : ϕ5

(→ E)
B `s x(yz) : ϕ2

(Ess)
B `E x(yz) : ϕ2

The references to y and z in the basis are altered because the duplicated derivation derives re-
named types from it. Also the type of x in the basis has to be changed because the argument
of the arrow is now an intersection type. So far the changes to the derivation have been quite
local to the point of expansion, but where the basis is actually used elsewhere in the derivation,
things get more tricky. Where another axiom rule references an altered (intersected) type in the
basis, do we pull out the original type (as a member of the intersection, using (≤)), or the whole
intersection? If the latter is chosen, we can use the operation of lifting to get the other option,
but if the former is chosen, the resultant derivation is simpler.

In the essential sytem, the latter option is chosen but this causes problems where the new
intersection type is derived into a place which doesnt allow an intersection type. Consider the
following derivation:

Example 3.9. Derivation that has potential for complicated expansion. B = {y : ϕ1}:
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(Ax)
B ∪ {x : ϕ1} `s x : ϕ1(→ I)
B `s λx.x : ϕ1 → ϕ1

(Ax)
B `s y : ϕ1(→ E)

B `s (λx.x)y : ϕ1(Ess)
B `E (λx.x)y : ϕ1

If we expand at the (→ E) rule, we induce a change in the argument of the type of λx.x, which
manifests itself in the basis in that sub-derivation, and thus causes the right hand side of the
arrow to become an intersection type as well: (ϕ1∩ϕ2)→ (ϕ1∩ϕ2). This right hand intersection
type then becomes the typing for the term.

Example 3.10. Illegal derivation, from expanding the above. B = {y : ϕ1 ∩ ϕ2}:

(Ax)
B ∪ {x : ϕ1 ∩ ϕ2} `s x : ϕ1 ∩ ϕ2(→ I)

B `s λx.x : (ϕ1 ∩ ϕ2)→ (ϕ1 ∩ ϕ2)
(Ax)

B `s y : ϕ1
(Ax)

B `s y : ϕ2(→ E)
B `s (λx.x)y : ϕ1 ∩ ϕ2(Ess)
B `E (λx.x)y : ϕ1 ∩ ϕ2

This is not allowed because of the intersection type to the right of the arrow, but there is an
equivelent derivation that is. Here, the expansion has been pushed down to the (Ess) rule.

Example 3.11. Fixed derivation. B = {y : ϕ1 ∩ ϕ2}:

(Ax)
B ∪ {x : ϕ1} `s x : ϕ1(→ I)
B `s λx.x : ϕ1 → ϕ1

(Ax)
B `s y : ϕ1(→ E)

B `s (λx.x)y : ϕ1

(Ax)
B ∪ {x : ϕ2} `s x : ϕ2(→ I)
B `s λx.x : ϕ2 → ϕ2

(Ax)
B `s y : ϕ2(→ E)

B `s (λx.x)y : ϕ2(Ess)
B `E (λx.x)y : ϕ1 ∩ ϕ2

These are but a few simple examples, there are other circumstances that can force the expansion
to a lower point in the derivation. Already, however, we can see that expansion is a very intricate
operation that affects the whole derivation tree. Since the operation must be expressed as an
algorithm on a typing (without reference to a derivation), this algorithm is rather abstract and
complex.

Different people have taken different approaches to specifying this algorithm, putting aside
the differences between type systems. It is possible to collect together the subtypes that are
affected, and then expand them as they occur in the typing starting with the biggest instances
[7]. Also it is possible to collect the affected type variables together, and then expand the strict
sub-types within the typing that end with one of these type variables [8].

This mechanism is promoting what was seen in the last example - that if it is unsuitable to
expand at a certain point, because doing so creates an invalid type, we expand further down in
the derivation tree. That is we expand a larger subtype. By also considering the sub-types of the
expanded sub-types, we can capture the changes to the basis, and the changes to other types that
occur as a result, throughout the derivation.
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In addition to the original typing, the type to be expanded, and the number of copies to be
generated, must be specified to do an expansion. Thus there are four parameters to this operation.
In [7] there were only three, since the expansion caused a single duplication, the idea being the
operation could be repeated if more were desired.

3.4.4 Comments

The operations defined for a system are merely chosen to show that any valid typing can be
instantiated from the principal typing, to prove the principal typing property for that system.
There may be different ways of formalising the operations as algorithms on the typing itself (i.e.
without direct reference to a derivation). Operations can also overlap, for example a substitution
will do the same thing as an expansion, assuming certain paramaters for each. It seems likely that
certain representations of operations will be more intuitive for programmers, and this is certainly
relevant for the practical use of intersection types.

In [3] it is noted that the operations, particularly expansion, are very complex. An alternative
is presented, that extends the notion of substitution enough so that it is sufficient to instantiate
the principal typing into any typing required. The intention is to make intersection types more
accessible to non-theorists, which is clearly important for their practical application.

The way this extension works is for the derivation to introduce an “expansion variable” into
the derivation (with an appropriate rule). This expansion variable marks the subtypes that are
affected by a particular expansion. The type inference procedure builds a derivation with expan-
sion variables in the correct places. Substitution then maps expansion variables to expansions,
in addition to its normal role in mapping type variables onto types. When the substitution is
applied to a type containing an expansion variable, it expands the marked subtype according to
the expansion defined in the substitution, i.e. it duplicates the subtype, renames type variables to
make it distinct, and forms the intersection.

3.5 Unification

In [7], [9], [8], and others, algorithms are given to find the principal typing for arbitrary lambda
normal forms, and the property of β= is used to generalise these results to the rest of the lambda
terms. It is possible to give the principal typing for an arbitrary lambda term, however, without
first beta-reducing it to normal form.

Recall that computing the principal typing of an application in normal form is trivial because
the term variable on the far left can be typed to a suitable arrow using the principal typings of the
arguments in the application. From now on we will call the principal typings of all the sub-terms
the “sub-typings”. There are constraints that must be satisfied between the sub-typings in this
case, but they are easy to solve since we can just choose any arbitrary but suitable typing for the
term variable sub-typing as discussed in section 3.2.

Generalising this to arbitrary terms requires that all the sub-typings in the application be
instantiated in a manner that is consistent with the constraints of the (→ E) rule, since the sub-
typing for left hand side will no longer be of the form 〈{x : ϕ}, ϕ〉. The chosen solution to
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this problem of finding suitable instantiation operations is unification. Using unification is the
traditional method of building the principal typing for a term, since the property of β= is not
to be found in many non-intersection type systems. The first principal typing algorithm using
unification for intersection types concerned the BCD system, and appeared in [6] together with
a proof of correctness and a proof of completeness.

Now we describe the problem of principal typing algorithms and unification for an intersec-
tion type discipline more formally. We relate this problem to the equivelant problem in the Curry
Type System. We describe how the unification algorithm proceeds, and how unification is used
by the principal typing algorithm in [6].

The principal typing algorithm for arbitrary terms traverses the term top-down, recursively,
in a syntax directed way, and is trivially defined for term variables and abstractions, since the
principal typing of a term variable is 〈{x : ϕ}, ϕ〉 and it is clear how to generate the typing for
an abstraction from the typing of its body. When computing the principal typing for an appli-
cation, however, the typing can be derived from the sub-typings but the algorithm must invoke
the unification algorithm. This determines only the necessary operations required to instantiate
the sub-typings into forms consistent with the application rule. That unification does not give
unnecessary operations, is essential if the principal typing algorithm is to actually provide the
principal typing, rather than an instance thereof. In the Curry Type System, the constraints are
as follows:

• The left hand side of an application is an arrow (of the form σ→ τ for some σ, τ).

• σ is the same as the type for the right hand side of the application.

• The basis (B) must be the same for both sides of the application.

The principal typing is thus defined to be 〈B, τ〉. Unification is used to ensure these constraints
are met. This is done in a rather technical way: Suppose we are trying to find the principal
typing for X1X2, and 〈B1, π1〉 and 〈B2, π2〉 are the sub-typings respectively. By unifying π1 and
π2 → ϕ, operations are found that will instantiate both sub-typings into forms that satisfy the
first two constraints. Taking these two instantiated sub-typings, it is possible to unify the bases
term-variable for term-variable to find operations that will instantiate the sub-typings further so
that the third condition is met. Then the principal typing can be found by extracting B from these
last sub-typing instances (either one - it doesnt matter since they are the same) and by applying
the collection of found operations to the type variable ϕ, which will produce τ [10].

In an intersection type system, the constraints are more relaxed. Subsumption in (Ax) means
that there is no longer an identity relationship between typings of term variables, and the assump-
tions in the basis. Specifically we can use finitary polymorphism to list the typing requirements,
so the bases can be unified simply by intersecting them, term-variable for term-variable. The
other constraints still hold however. Suppose we find the principal typing for X1X2, and 〈B1, π1〉

and 〈B2, π2〉 are the sub-typings respectively, we must find instances of 〈B1, π1〉 and 〈B2, π2〉 that
satisfy the following constraints:

• the left hand side of an application is an arrow (σ→ τ)
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• σ is the same as the type for the right hand side of the application. To make the Essential
system meet with the BCD system, we can consider the right hand sub-typing to have an
intersection type, and σ to be this same intersection type.

The principal typing is thus 〈B1 ∩ B2, τ〉. The principal typing algorithm proceeds in exactly the
same way as for the Curry Type System, except there is no need to unify the bases after applying
the initial operations to them, they are simply intersected, term-variable for term-variable. It is of
interest now to understand that in the Curry Type System, unification fails (returns an exception)
when a type variable is unified with a type that contains that variable (there is no operation
that will convert both to the equivelent types). This used to happen when unifying the bases, for
example when finding the principal typing of xx it was necessary to unify x : ϕ2 and x : ϕ1 → ϕ2.

It is impossible for unification to fail when unifying two disjoint principal types π1 and
π2 → ϕ, so the principal typing algorithm for intersection types never returns an exception.
The unification algorithm actually does not return an exception at all, when no unification is
possible, but instead returns a substitution that reduces both types to the nullary intersection.
The theorem still holds in the form that the principal typing algorithm does not return ω as a
type.

Now we review the manner of operation for the unification algorithm in [6]. Firstly its trivial
operation: When unifying ω with anything, the only possibility is to return a substitution that
converts everything to ω. For the unification of a type variable with any type, the variable is
substituted with the type. As just mentioned above, if the variable occurs in the type, there is
no choice but to return a substitution to ω. The remaining cases require recursive calls to the
unification algorithm.

The case where one type is an intersection and the other is not, returns an expansion of
the type that is not, so that when applied, tye type becomes an intersection. This is where the
algorithm begins to lose its elegance of definition however, since the operation of expansion has
more than a local effect on a typing, it is impossible to apply the expansion to the sub-type where
the algorithm is currently studying. The expansion must be applied to the whole typing and the
process of unification must begin again.

Thus both of the original “root” typings (including bases!) must be passed to each recursive
invocation of the algorithm so that if an expansion is required, they are available. Similarly, if
an expansion was performed in a recursive step, the algorithm has already been repeated from
scratch, so the answer returned from that recursive step is the ultimate answer. This detail plays
a part in the unification of a pair of arrows. The use of “closures” (locally defined in [6] does not
affect the result of unification but is necessary because of technical intricacies in the definition
of expansion in that paper. Closures are not desirable because they complicate the definition of
the principal typing algorithm, and obfuscate its true nature.

The case where two arrows are unified is identical to the corresponding case in the Curry
System. First a unification is found for the left side (by recursive use of the unification algo-
rithm), these operations are then applied to the right side and then unification is used again. The
two chains of operations collected form these calls are composed and returned as a single chain.

The remaining case is where two intersections need to be unified. This proceeds in a similar
way to the arrow case. First the left hand side of each intersection is unified, the resulting chain
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is appled to each right hand side, which are then further unified to produce another chain. Both
chains are composed and returned as a single chain. This is interesting because although the
arrow type constructor is not commutative, the binary intersection type constructor used in the
BCD system is. This unification algorithm, however, may return different results for σ ∩ τ and
τ ∩ σ.

While this counter-intuitive property does not seem to affect the correctness or completeness
of the principal typing algorithm, it is none-the-less undesirable and may show up in pragmatic
extensions of intersection type systems. It is perhaps an effect of the conceptual distance between
the symbolic representation of intersections (a binary operator) and their intuitive meaning (a set
of types that hold). By being syntax directed, the unification algorithm treats the intersection
type as a tree, rather than a set.

In [3], an alternative approach is taken to the problem of solving the constraints imposed by
the (→ E) rule. An entirely different type inference algorithm is defined: Firstly a deduction tree
(called a “skeleton”) is explicitly built from the term using a syntax directed algorithm called
“skel”. This skeleton has a similar structure to the (hypothetical) principal derivation, but is
constructed in a “dumb” way, without satisfying the constraints at each (→ E). As well as
using explicit definitions of skeletons, the paper defines substitution as an operation on skeletons
(explicitly), rather than on typings as seen before. Because the paper uses expansion variables,
substitution is the only operation required.

Then, a set of explicit constraints, ∆, is formed by inspecting the skeleton. These take the
form of equality constraints between the types at each (→ E), for example:

Example 3.12. The constraint for this part of a skeleton is ρ = τ→ σ.

B ` M1 : ρ B ` M2 : τ
(→ E)

B ` M1M2 : σ

The next step - solving these constraints - is the unification algorithm. This will take ∆ and
produce a set of substitutions that convert the primitive skeleton onto a sound principal derivation
for the original term, thus completing the type inference. The explicitness of the approach in [3]
makes for an algorithm, the nature of which is clearly and elegantly presented.

3.6 Undecidability

The problem of undecidability with the intersection type system is far worse than the problems
associated with the Curry Type System and other type systems in practical use. It completely
prevents a type inference algorithm for an unrestricted intersection type system being used in
practice. The problem is that although all terminating programs can be typed, non-terminating
ones cannot. This can be demonstrated by attempting to unify ϕ1 ∩ (ϕ1 → ϕ2) → ϕ2 and
ϕ1∩ (ϕ1 → ϕ2)→ ϕ2 → ϕ3 - which is required when inferring the type of the canonical example
of an infinitely-reducing lambda term (λx.xx)(λx.xx).

Recall that the purpose of a type system is the static analysis of computer programs, at
compile time. This must be autonomous, and thus if we cannot guarantee termination, we will
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have a compiler that “crashes”. Forsythe solved this problem by using type annotations instead
of full-on type inference, and also since it did not have type variables, there was no notion of
principality for typings, since there were no operations on typings. Unification was not required
in the Forsythe implementation.

Many other type systems are undecidable, in fact the search for “advanced” type systems
(that solve some of the limitations of currently-used practical type systems such as used in ML)
has come up with many systems that are undecidable. The root of this property is that the type
system is too close to the actual language it types, in the sense of representing its computational
behaviour. The intersection type system as described in this chapter, and many others in the
literature that are very similar, is in fact a perfect representation of the behaviour of the lambda
calculus, with its “everything is a function” ethos. It is likely therefore, that restricting the type
system will produce a decidable type system. Of course the useful properties of the unrestricted
system may not manifest themselves in a restriction, so it is necessary to choose a good restric-
tion.

It turns out that finite rank restrictions of an intersection type system with type variables,
such as the essential system, are not only decidable, but have principal typings [3]. This is a fan-
tastic result, since such systems can type many more terms than any other system, even systems
which do not have principal typings. The type system with rank restriction n is restricted in its
type syntax: Intersection types are not allowed beyond a depth of n arrows. Recall that the unifi-
cation algorithm loops because expansions and substitutions create types that keep growing. By
restricting the amount that types can grow to, you are effectively giving the unification algorithm
a finite amount of “fuel”. When it runs out of this fuel, it will return an exception denoting that
the term was not typeable. This algorithm is still correct and complete when it does terminate
successfully, however, and thus a decidable restriction is found.

3.7 Conclusion

We have studied the technical nature of intersection types when typing lambda calculus terms,
including the properties that it can type all normalisable terms, and is closed over beta reduction
/ expansion. We have also seen how intersection types have great power when used within
a practical language such as Forsythe, but to admit the typing of truely re-useable code, will
require type variables.

We have seen how an intersection type system with variables has principal typings with but
requires an extended set of operations to be complete. Although undecidability would make the
type system useless for practical languages in its unrestricted form, it turns out that a simple
restriction provides a decidable inference algorithm that is more powerful than any other in ex-
istence, and also has principal typings. This result is very encouraging for the use of intersection
types in practice.
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