
Lock Inference Proven Correct

Dave Cunningham Sophia Drossopoulou Susan Eisenbach

Imperial College London

FTfJP 2008

1/18



Why Atomic sections

Example:

atomic {
Node x = new Node();
x.next = list.first;
list.first = x;

}

• Semantics easy for programmers to understand
• Guaranteed that threads don’t interfere

• Concurrency much easier
• Naive implementation is inefficient
• Lots of research tries to interleave more threads (which is hard)

2/18



Why Lock Inference?

One thread in an atomic section.

Non-interfering threads allowed to proceed.

3/18



Why Lock Inference?

One thread in an atomic section.
Non-interfering threads allowed to proceed.

3/18



Our Algorithm

In CC’08 we published an algorithm that compiles atomic sections:

Source Target Analysis

atomic {
z.g = this;
y = x.g;
y.f = 42;

}

lock(x, x.g, z, this);
z.g = this;
y = x.g;
y.f = 42;
unlockall();

4/18



While Loops

NFAs allow iterations:

atomic {
while (...) {

x = x.n;
}

}

Termination is due to the use of CFG nodes as NFA states.

5/18



While Loops

NFAs allow iterations:

atomic {
while (...) {

x = x.n;
}

}

Termination is due to the use of CFG nodes as NFA states.

5/18



While Loops

NFAs allow iterations:

atomic {
while (...) {

x = x.n;
}

}

Termination is due to the use of CFG nodes as NFA states.

5/18



While Loops

NFAs allow iterations:

atomic {
while (...) {

x = x.n;
}

}

Termination is due to the use of CFG nodes as NFA states.

5/18



While Loops

NFAs allow iterations:

atomic {
while (...) {

x = x.n;
}

}

Termination is due to the use of CFG nodes as NFA states.

5/18



In This Paper We Prove Soundness

Our approach:

• Assume the two-phase locking discipline is sound
• Don’t have to worry about concurrency at all!
• Prove analysis correctly infers the objects accessed

In this talk, I will:

• Show analysis in more detail
• Formalise the meaning of the NFAs:

• Show soundness theorem

6/18



The Transfer Functions

How to formalise the analysis:

Addition function a(stn) inserts the accesses performed by st

Translation function t(stn)(G) rewrites G to compensate for state change

7/18



Addition Function

(introduces new accesses into the CFG)

8/18



Translation Function (copy)

A standard kill/gen function

Translate the accesses to balance the effect of the statement:

9/18



Translation Function (load)

10/18



Translation Function (store)

11/18



What is soundness?

Does the top NFA safely approximate the addresses accessed?

• Let execution start from the top of the atomic section.
• Let A be the addresses accessed (define a semantics for this)
• Let G be the NFA from the analysis

Want to show A ⊆ G
But we have no link between static world G and dynamic world A.

• Static characterisation of a set of objects.
• Easily represent infinitely many accesses.

12/18



Linking NFAs to addresses

An assignment ϕ interprets G in a stack,heap.
Assignment ϕ stores a set of addresses at each NFA state

13/18



Linking NFAs to addresses

An assignment ϕ interprets G in a stack,heap.
Assignment ϕ stores a set of addresses at each NFA state

13/18



Linking NFAs to addresses

An assignment ϕ interprets G in a stack,heap.
Assignment ϕ stores a set of addresses at each NFA state

13/18



Linking NFAs to addresses

An assignment ϕ interprets G in a stack,heap.
Assignment ϕ stores a set of addresses at each NFA state

13/18



Linking NFAs to addresses

An assignment ϕ interprets G in a stack,heap.
Assignment ϕ stores a set of addresses at each NFA state

13/18



Token Maths Slide

We can represent the NFAs as e.g.:

G = {x 7→ 2, 2→f 2, y 7→ 3, 3→f 4}

We say h, σ ` G : ϕ if ϕ is consistent with heap h, stack σ, NFA G

i.e. iff

x 7→ n ∈ G ⇒ σ(x) ∈ ϕ(n)

n→f n′ ∈ G ⇒ {h(a)(f )|a ∈ ϕ(n)} ⊆ ϕ(n′)

14/18



Soundness Revisited

Now we can define soundness :

If:

• G is the NFA returned by the analysis
• h, σ is the initial heap, stack
• A is the addresses accessed (operational semantics in paper)
• ϕ is the addresses at each node of G h, σ ` G : ϕ

then we must have A ⊆ squash(ϕ)

15/18



Soundness Proved

We used Isabelle/HOL.

• Mostly just sets (with a few lists too)
• Definitions are exactly as presented except for:

• Explicit quantifiers where they are needed
• Explicit handling of null, and the undefinedness of partial functions

• Well-formed induction using length of A
• ∼ 800 lines (including definitions)
• ∼ 30 seconds for proofgeneral to verify on 3Ghz P4
• Proof assistants are cool!

16/18



Conclusions

Proved soundness of our lock inference algorithm:
• Use known facts of two-phase discipline
• Use transfer functions to formalise analysis
• Use operational semantics to formalise execution
• Assignments (ϕ) were the missing link
• Mechanically checked proof

Further work:
• Prove early unlocking
• Prove readers/writers
• Prove arrays, functions, exceptions, etc.
• Improve underlying analysis

17/18



The End

Thankyou!

18/18



The ‘atomicity via locks’ arena

Papers Granularity Assigns Deadlock Early unlock
(chron. (* locks not) (* inside (* sync block)
order) inferred) domain)
Flanagan99-05 Ownership* No N/A Yes*
Boyapati02 Ownership* No Static Yes*
Vaziri05 Static Yes* Static No
McCloskey06 Dynamic No Static No
Hicks06 Static Yes* Static No
Emmi07 Dynamic Yes* Static No
Halpert07 Dynamic Yes* Static No
Our work Multigrain Yes Dynamic Yes
Cherem08 Multigrain Yes Static? No

Key: v.good, good, OK, bad

19/18



Two ways of safely interleaving more threads

Transactional Lock
Memory Inference

I/O Hard Easy
Reflection Easy Need JIT support
Native calls Hard Hard
Compiler machinery Some Lots
Runtime machinery Lots Some
Performance Slow Fast
Granularity Perfect Reasonable

Key: good, OK, bad

20/18



Operational Semantics

We need to know what addresses are accessed by a block of code.
A big step operational semantics will suffice for this.
We can define it on the CFG to keep it simple.

P ` h, σ, n
{}
 ∗

P(n) = [x = y .f , n′]
σ(y) = a

P ` h, σ[x 7→ h(a)(f )], n′
A
 ∗

P ` h, σ, n
{a}∪A
 ∗

P(n) = [x = y , n′]

P ` h, σ[x 7→ σ(y)], n′
A
 ∗

P ` h, σ, n
A
 ∗

21/18


