Lock Inference Proven Correct

Dave Cunningham Sophia Drossopoulou Susan Eisenbach

Imperial College London

FTfJP 2008

Why Atomic sections

Example:

atomic {
Node x = new Node();
x.next = list.first;

list.first = x;

Semantics easy for programmers to understand
e Guaranteed that threads don't interfere

e Concurrency much easier

Naive implementation is inefficient

Lots of research tries to interleave more threads (which is hard)

Why Lock Inference?

e
T

One thread in an atomic section.
Non-interfering threads allowed to proceed.

Our Algorithm

In CC'08 we published an algorithm that compiles atomic sections:

Source Target Analysis
this

[

1
atomic { lock(x, x.g, z, this); | |z.g = this

z.g = this; | z.g = this;
y = X8 y = X8
y.f = 42; y.f = 42;

} unlockall();

4/18

While Loops

NFAs allow iterations:

[
atomic {
while (...) {
X = X.n;
}
}

Termination is due to the use of CFG nodes as NFA states.

While Loops

NFAs allow iterations:

[
atomic {
while (...) {
X = X.n;
}
}

Termination is due to the use of CFG nodes as NFA states.

While Loops

NFAs allow iterations:

atomic {
while (...) {
X = X.n;
}
}

Termination is due to the use of CFG nodes as NFA states.

While Loops

NFAs allow iterations:

atomic {
while (...) {
X = X.n;
}
}

Termination is due to the use of CFG nodes as NFA states.

While Loops

NFAs allow iterations:

atomic {
while (...) {
X = X.n;
}
}

Termination is due to the use of CFG nodes as NFA states.

In This Paper We Prove Soundness

Our approach:

e Assume the two-phase locking discipline is sound
e Don't have to worry about concurrency at all!
e Prove analysis correctly infers the objects accessed

In this talk, | will:

e Show analysis in more detail
e Formalise the meaning of the NFAs:

e—=>D

e Show soundness theorem

The Transfer Functions

How to formalise the analysis:

G' = a(st") v t(st")(G)

st
G

Addition function a(st") inserts the accesses performed by st

Translation function t(st")(G) rewrites G to compensate for state change

Addition Function

(introduces new accesses into the CFG)
¢ [Y3 (:)

X = y.f

¢

Translation Function (copy)

A standard kill/gen function

Translate the accesses to balance the effect of the statement:

FEF

9/18

Translation Function (load)

L

x=y.f

¢

10/18

Translation Function (store)

11/18

What is soundness?

Does the top NFA safely approximate the addresses accessed?

e Let execution start from the top of the atomic section.
e Let A be the addresses accessed (define a semantics for this)
e Let G be the NFA from the analysis

Want to show A C G
But we have no link between static world G and dynamic world A.

*->CD
e Static characterisation of a set of objects.

e Easily represent infinitely many accesses.

12/18

Linking NFAs to addresses

An assignment ¢ interprets G in a stack,heap.
Assignment ¢ stores a set of addresses at each NFA state

stack heap NFA
{}

var | addr addr| field f X
x |10 10| 20

y[30 20[10

{}
30 | 40 f {}

13/18

Linking NFAs to addresses

An assignment ¢ interprets G in a stack,heap.
Assignment ¢ stores a set of addresses at each NFA state

stack heap NFA
{10}

var | addr addr| field f X
x |10 10| 20

y[30 20[10

{}
30 | 40 f {}

13/18

Linking NFAs to addresses

An assignment ¢ interprets G in a stack,heap.
Assignment ¢ stores a set of addresses at each NFA state

stack heap NFA
{10,20}
X

var | addr addr| field f
x |10 10| 20

y[30 20[10

{}
30 | 40 f {}

13/18

Linking NFAs to addresses

An assignment ¢ interprets G in a stack,heap.
Assignment ¢ stores a set of addresses at each NFA state

stack heap NFA
{10,20}
X

var | addr addr| field f
x |10 10| 20

y[30 20[10 {30}

30 | 40 f {}

13/18

Linking NFAs to addresses

An assignment ¢ interprets G in a stack,heap.
Assignment ¢ stores a set of addresses at each NFA state

stack heap NFA
{10,20}
X

var | addr addr| field f
x |10 10| 20

y[30 20[10 {30}

30 | 40 f {40}

13/18

Token Maths Slide

We can represent the NFAs as e.g.:

G={x—22-f2y—-33-f4

Wesay hyo- G : if ¢ is consistent with heap h, stack o, NFA G
i.e. iff
x—neG=o(x)ep(n)

n—'n"€G={ha)(f)la € p(n)} C o(n')

Soundness Reuvisited

Now we can define soundness :

If:

G is the NFA returned by the analysis

h, o is the initial heap, stack

A is the addresses accessed (operational semantics in paper)

 is the addresses at each node of G h,o - G : ¢

then we must have A C squash(y)

Soundness Proved

We used Isabelle/HOL.

Mostly just sets (with a few lists too)

Definitions are exactly as presented except for:

e Explicit quantifiers where they are needed
e Explicit handling of null, and the undefinedness of partial functions

Well-formed induction using length of A

~ 800 lines (including definitions)

~ 30 seconds for proofgeneral to verify on 3Ghz P4

Proof assistants are cooll

Conclusions

Proved soundness of our lock inference algorithm:

Use known facts of two-phase discipline

Use transfer functions to formalise analysis

Use operational semantics to formalise execution

Assignments () were the missing link

Mechanically checked proof
Further work:
e Prove early unlocking
e Prove readers/writers
e Prove arrays, functions, exceptions, etc.

e Improve underlying analysis

The End

Thankyoul

The ‘atomicity via locks’ arena

Papers Granularity Assigns Deadlock Early unlock
(chron. (* locks not) (* inside (* sync block)
order) inferred) domain)

Flanagan99-05 | Ownership* No N/A Yes*
Boyapati02 Ownership* No Static Yes*
Vaziri05 Static Yes* Static No
McCloskey06 Dynamic No Static No
Hicks06 Static Yes* Static No
Emmi07 Dynamic Yes* Static No
Halpert07 Dynamic Yes* Static No

Our work Multigrain Yes Dynamic Yes
Cherem08 Multigrain Yes Static? No

Key: v.good, good, OK, bad

Two ways of safely interleaving more threads

Transactional Lock
Memory Inference
1/0 Hard Easy
Reflection Easy Need JIT support
Native calls Hard Hard
Compiler machinery Some Lots
Runtime machinery Lots Some
Performance Slow Fast
Granularity Perfect Reasonable

Key: good, OK, bad

Operational Semantics

We need to know what addresses are accessed by a block of code.
A big step operational semantics will suffice for this.
We can define it on the CFG to keep it simple.

{
Pt hyo,n~~*

P(n) = [x = y.f,1]
=a

[y — /
o) P0) =~ b= rrl)
A /s
P h,olx — h(a)(F)l,n ~>° PEholx = o)n
{a}UA ¥
Pr hyo,n ~* P h,o,n

